CONTEXT PARAMETRIZATION WITH COMPOSITIONAL
ADAPTERS

Josip Juki¢ Martin Tutek Jan Snajder
TakeLab, University of Zagreb
{josip.jukic, martin.tutek, Jjan.snajder}@fer.hr

ABSTRACT

Large language models (LLMs) often seamlessly adapt to new tasks through in-
context learning (ICL) or supervised fine-tuning (SFT). However, both of these
approaches face key limitations: ICL is inefficient when handling many demon-
strations, and SFT incurs training overhead while sacrificing flexibility. Mapping
instructions or demonstrations from context directly into adapter parameters offers
an appealing alternative. While prior work explored generating adapters based on
a single input context, it has overlooked the need to integrate multiple chunks of
information. To address this gap, we introduce COMPAS, a meta-learning frame-
work that translates context into adapter parameters with a compositional struc-
ture. Adapters generated this way can be merged algebraically, enabling instruc-
tions, demonstrations, or retrieved passages to be seamlessly combined without
reprocessing long prompts. Critically, this approach yields three benefits: lower
inference cost, robustness to long-context instability, and establishes a principled
solution when input exceeds the model’s context window. Furthermore, COM-
PAS encodes information into adapter parameters in a reversible manner, enabling
recovery of input context through a decoder, facilitating safety and security. Em-
pirical results on diverse multiple-choice and extractive question answering tasks
show that COMPAS outperforms ICL and prior generator-based methods, espe-
cially when scaling to more inputs. Our work establishes composable adapter
generation as a practical and efficient alternative for scaling LLM deployment.

1 INTRODUCTION

Large language models (LLMs) adapt to new tasks by integrating contextual information pertaining
to these tasks, such as instructions, demonstrations, or extracted evidence. This adaptability is typi-
cally realized through in-context learning (ICL) (Brown et al., 2020), instruction following (Ouyang
et al.|2022)), and retrieval-augmented generation (Lewis et al.,|2020; Borgeaud et al., [2022), where
extra tokens in the prompt act as a transient memory that steers model behavior. Another com-
mon strategy is to adapt parameters directly through supervised fine-tuning (SFT), ranging from full
model updates (Devlin et al., |2019; Raffel et al.,|2020) to parameter-efficient variants |Pfeiffer et al.
(2023). While effective, both prompting and SFT face limitations. Prompt-based methods often
require long contexts, which destabilize attention and degrade performance as length increases (Liu
et al., 2023} [Kossen et al., |2023)), while also incurring inference costs that scale with context size.
SFT, on the other hand, requires additional training overhead and lacks flexibility across tasks.

A complementary line of work views adapters (Houlsby et al., 2019; |[Hu et al.l 2022) as a mecha-
nism for parametrizing context. In our work, we use context as an umbrella term for instructions,
demonstrations, or supporting passages. By translating context into parameters, adapters offer a per-
sistent representation that replaces prompt tokens, thereby improving the stability of processing long
contexts and amortizing adaptation across tasks (Karimi Mahabadi et al.| 2021} He et al., |2022; |[Liu
et al., 2023). Once context is encoded into adapters, inference requires only the query tokens, reduc-
ing the cost of processing long prompts and making the approach especially attractive in latency- or
memory-constrained settings. This context-to-adapter transformation encodes an otherwise transient
token sequence into a manipulable object, allowing for caching, reuse, and algebraic combination.

Context ¢y @ Teacher T Base LLM —> Yt
Query q l-\>
Context co
\ Student S Base LLM

Generator G . - SRR T > Ys

| SREREELEL [S3mmrmmmmme =,
Adapters } -+ (P} Adaptery,

CLLELTTTEETT]

Context ¢y |- [Base LLM] [Adapter] .. 12 Adapter ()

Figure 1: Overview of the COMPAS framework. Each context c; is mapped into an adapter by
the generator G, while the query q is processed by the student S. The teacher 1" processes the
concatenated input [c; q], and G is trained so that composed adapters in .S align y with y;.

Building on this perspective, recent work has leveraged meta-learning to efficiently generate adapter
parameters directly from support examples without fine-tuning anew for each context (Zhang et al.,
2023;Wang et al.,[2023;(Chen et al.,2025)). These works largely focused on producing adapters from
a single context. In practice, however, contexts rarely occur in isolation. Tasks are often guided by
chains of instructions, multiple demonstrations, or sets of retrieved passages that must be integrated.
Without a principled notion of composition, such adapters cannot faithfully capture how LLMs
combine multiple sources of context. Composability also addresses the limitations of prompt-based
adaptation. Instead of concatenating long contexts, adapters can be merged algebraically in parame-
ter space. The key challenge is therefore not parameter generation alone, but algebraically consistent
composition that preserves semantics of concatenated texts while retaining efficient inference.

To bridge this critical gap, we introduce COMPAS (Compostional Adapters), a framework that maps
context into adapter parameters with compositional structure at its core. See Figure[I]for a high-level
overview. In COMPAS, a teacher LM process concatenated contexts, while the student LM learns
to approximate this behavior using only query tokens, complemented with the sum of adapters gen-
erated for individual contexts. This is facilitated by a generator network, which maps individual
contexts into compositional adapters. COMPAS is driven by auxiliary compositionality and recon-
struction losses, which provide diagnostics for whether parameter-space operations preserve seman-
tics and faithfulness (Jacovi & Goldberg),2020; |Turpin et al.,[2023;|Min et al.| 2023} [Lampinen et al.,
2022). We evaluate COMPAS on multiple-choice and extractive QA tasks, where either demonstra-
tions (MMLU, ARC-Challenge) or retrieved passages (HotpotQA) serve as context. We observe
consistent improvements over ICL, fine-tuning and existing context-to-parameter methods. These
gains are most pronounced when scaling to larger numbers of demonstrations, highlighting the ca-
pacity of COMPAS for efficient integration of external evidence by composition in parameter-space.

Our contributions are threefold: (1) We introduce COMPAS, a teacher-student framework for en-
coding context into adapters which facilitates composition in parameter space. (2) We establish
theoretical conditions under which parameter-space addition provably approximates the behavior of
the teacher model. (3) We empirically show that COMPAS outperforms alternatives, especially when
scaling to large context sizes, demonstrating the benefits of compositional integration of information.

2 ADAPTER COMPOSITIONALITY

Our goal is to ensure that adapters generated from individual contexts can be composed in parameter
space to replicate the effect of context concatenation in input space. More concretely, in a teacher—
student setup, the outputs of the teacher LM produced when given multiple contexts jointly should be
reproduced by the student LM using only the query tokens along with the sum of the corresponding
adapter parameters. We now formalize this requirement, introducing conditions under which adapter
addition in the parameter space corresponds to context concatenation in the input space.

2.1 SETUP

Let V be the vocabulary and |V its size. A language model with frozen parameters 8 € R" is a
function fg : X — RIVI, where X = ¥* is the set of all token sequences over the alphabet ¥. For

x € X, the output fo(2) € RIVI denotes the logit vector over the vocabulary. A support context
c € C is any textual information (e.g., a demonstration, instruction, or retrieved passage) provided
alongside a query q € X, where C C X denotes the set of admissible contexts. We use [c;q] € X
to denote the concatenation of a context ¢ with the query q. Let ® C R™ denote the set of adapter
parameters, and let ¢ € ® denote parameters for a single adapter, i.e., a structured modification of
6. We write 8 & ¢ for the parameters obtained by composing 6 with ¢.

The teacher model corresponds to the base LM applied to the concatenated input: fr(c,q) =
fo([c; q]). The student model processes only the query, under parameters modified by the adapter:

fg’ (a) = fope(q). For a sequence contexts ci,...,c, the teacher takes the concatenation
[c1;...;cg;q), while the student uses the query together with the summed adapter Zle ¢;. For

example, with two contexts, ¢; and ca, the student reduces to f g’ 12 (@) = fow (¢, +5) (). Finally,
a generator G : C — ® maps each context ¢ € C into an adapter ¢ = G(c). In particular, for a pair
of contexts c¢; and ¢y we define ¢p; == G(c1), @2 = G(c2), and ¢12 = G([cq; ca)).

2.2 COMPOSITIONALITY BOUND

The set of finite contexts C, equipped with concatenation and the empty string identity (\), forms a
free monoid (C, [-;], A). On the other hand, the adapter space (¥, +, 0) is a commutative additive
monoid. A fundamental requirement for adapter compositionality is that the generator G : C — ®
be a monoid homomorphism, G([c1; c2]) = G(c1) + G(c2) and G(A\) = 0, so that addition in the
adapter space exactly mirrors concatenation in the input space. Demanding G to be a homomor-
phism aligns these two structures. Concatenation on C is associative but not commutative, whereas
addition on @ is both. Thus, requiring G to be a homomorphism implicitly collapses the order of
contexts. This means that GG is a non-injective homomorphism: permuted concatenations map to the
same adapter sum. We regard this loss of order as desirable in many cases, as the contribution of a
demonstration or retrieved passage should often be independent of its relative position. By treating
contexts as a set rather than a sequence, we aim for adapters that focus on semantics, mitigating the
order sensitivity and instability observed in long-context transformers

Enforcing a homomorphism between the free monoid of contexts and the additive monoid of adapter
parameters via a teacher—student setup cannot be achieved exactly in practice, given the models’
finite representational capacity, the finiteness of the training sample, and the approximate nature
of optimization. We therefore approximate it, which introduces discrepancies. To capture these
discrepancies and regularity conditions, we introduce three quantities.

Student—teacher error. For a context ¢ with the corresponding adapter ¢ = G(c), the student’s
discrepancy from the teacher is

e(c) = [[f2(a) — fr([c; a])l2, (1)

Generator additivity error. The generator’s deviation from additivity is

n = [|G([e1; c2]) — (G(e1) + G(e2))l|2. 2

Parameter sensitivity. The student’s logits vary smoothly with respect to adapter parameters, with
a Lipschitz constant
£ _ £92
b s 1@ 2@l “
¢r.p2a D1 — P2l

The first two quantities capture the core requirements of compositionality, while the third provides
a regularity condition needed for the analysis. Assuming L < oo, i.e., Lipschitz continuity of the
student with respect to adapter parameters, we obtain the following result.

Theorem 1 (Compositionality Bound). For any contexts ¢, co, and query q, with ¢, = G(c;),

€272 (q) — fr([er;caial)]le < Ly + e(fer;ca)).

! Certain tasks may still require positional information (e.g., reasoning with ordered evidence). We show in
Appendix E] that our framework can incorporate explicit positional encodings when needed.

See Section[A]for the proof. The bound decomposes the student—teacher error into two interpretable
sources: generator additivity error () and misfit on the concatenated context (¢([cy; cz])). The
Lipschitz constant L propagates generator errors into the student. Thus, perfect compositionality is
unattainable in practice, but approximate compositionality is achievable whenever these quantities
remain small.

3 METHOD

Previously, we decomposed the discrepancy between context concatenation and adapter addition
into two main error sources: generator additivity error (1) and student—teacher error on concatenated
contexts (e€), with parameter sensitivity (L) controlling how generator errors propagate to outputs.
While L is a structural property of the student model, we can design the generator and its training
objectives to directly minimize 1 and e. To this end, we introduce COMPAS, a teacher—student
meta-learning framework that maps each support context into a LoRA adapter (Hu et al., [2022),
which is composed additively with the base parameters. The adapter generator ends with a linear
bottleneck, ensuring that its outputs in parameter space add directly. This algebraic addition is
trained to approximate the outputs of the model under context concatenation in input space. To
achieve this, we design loss functions that incentivize the generator to approximate a homomorphism
from context concatenation to parameter-space addition.

3.1 CONTEXT-TO-ADAPTER GENERATOR

As introduced in Section the generator G maps a context c to adapter parameters ¢ = G(c). It is
implemented by augmenting the base LM with additional trainable components: (i) its own LoRA
adapter inserted into the LM, and (ii) a linear bottleneck followed by two projection trunks. The
same frozen base LM is shared across the teacher, the student, and the generator, where only the
generator’s adapter and projection components are updated during training.

Given a support context c, the base LM (with the generator’s adapter) processes the tokens, and
we obtain h(c) € R? as the mean of the final-layer hidden states across all tokens. This pooled
representation is projected into a compact latent space,

z(c) = Ph(c), PeR™ r<d,

reducing dimensionality and ensuring the subsequent mapping into LoRA parameters remains
tractable. Without this bottleneck, a direct mapping would require prohibitively many parameters.

A LoRA module applied to a target linear map with input dimension d'™ and output dimension d°"*
consists of two low-rank matrices A € R™*4" and B € R %" with rank r < d'®, d°"t. Each
transformer layer may contain multiple such modules (e.g., query, key, value, or output projections).
Let M denote the set of all modules instrumented with LoRA, indexed across layers and projection
types. From the latent representation z(c), the generator produces parameters for all modules via
two bias-free linear projections: Uaz(c) € R™4 and Upz(c) € R™5, with

in out
my = E Ty mpg = E Ao rm,.

meM meM

The outputs of U4 and Up are partitioned and reshaped into the individual LoRA matrices A, (c)
and B,,,(c) for each target module m € M. See Figure[l|for a high-level overview of COMPAS.

3.2 Loss FUNCTION COMPONENTS

Our loss function design follows Theorem [I} we reduce the student—teacher error in both single
and concatenated contexts, and penalize generator non-additivity. We also include a reconstruction
term that encourages adapters to faithfully encode their contexts (up to permutation), preventing col-
lapse into trivial solutions. This auxiliary objective also regularizes training and provides a stronger
learning signal, aiding optimization.

Student-teacher alignment. We draw unlabeled queries q and contexts of length k € {1,2},
letting the teacher provide soft pseudo-labels (logits). The student is trained to match these through

weak supervision:

Lst = E((cy,....cn),) [KL (softmax(fT([cl; . Cs q])) H softrnaoc(f??:1 i (q)))} .

where KL denotes Kullback-Leibler divergence. For £ = 1 this enforces single-context fidelity,
while for £ = 2 it enforces compositionality.

Additivity regularization. We reduce the generator additivity error n by penalizing discrepancies
between parameters generated for concatenated contexts and the sum of parameters from the indi-
vidual contexts. Concretely, we draw pairs of contexts (c1, c2) and compare generated parameters:

W (es e2]) — (Wonler) + W (e2)) |5
> RN :
e [Won(lex: ea])[[+ 6

Lapp = E(cl,cz) [

where W,,,(c) € {A,,(c), B, (c)} denotes either of the two LoRA matrices generated for module
m € M, || - || is the Frobenius norm, and § > 0 is a small constant for stability.

Reconstruction. To encourage faithfulness and improve training stability, we require adapters
to recoverably encode the information contained in their contexts. We introduce a special query
token [RECON], which prompts the student to reconstruct the support context from its adapter in
an autoregressive manner. This discourages collapse to trivial solutions and provides an auxiliary
learning signal through the cross-entropy (CE) loss:

Lrecon = E¢ [CE(C, ¢ ([RECON]))} .

Overall objective. The final loss function is a weighted sum:

Lcoweas = AstLst + AappLADD + ARECONLRECON- €]

Hyperparameter choices and training details are provided in Section[B]

4 EXPERIMENTS

We first outline the experimental design with full setup and hyperparameter details in Sec-
tion |Bl We then evaluate COMPAS in two regimes: (i) replacing in-context demonstrations with
adapter parameters (§4.2), and (ii) encoding retrieved passages as parametric memory (§4.3). Fi-
nally, we assess reconstruction, measuring faithfulness of information encoded in adapter parameters
(§4.4). Additional experiments on context order sensitivity and efficiency are in Section|C]

4.1 EXPERIMENTAL SETUP

Models. We experiment with decoder-only LMs: LLaMA-3.1 8B (LLaMA 8B) and Llama-
3.2 3B (Dubey et al., 2024), and Qwen-2.5 7B (Yang et al., 2025). For brevity, we refer to these
models as LLaMA 8B, LLaMA 3B, and Qwen 7B.

Tasks. We consider two representative settings: (i) ICL on MMLU (Hendrycks et al., 2021)) and
ARC-Challenge (Clark et al.,2018)), where few-shot exemplars are provided as demonstrations; (ii)
Extractive question answering (QA) on HotpotQA (Yang et al.,[2018), where gold passages supply
contextual evidence. Prompts and preprocessing are standardized across all methods (Section D).

Methods. We compare against three representative approaches. ICL is standard k-shot prompt-
ing with demonstrations concatenated in prompt text. Generative Adapter (GenAda) (Chen et al.,
2025)) employs a nonlinear hypernetwork to predict adapter weights from context, trained with re-
construction and continuation losses. In contrast, our method enforces a linear bottleneck, generat-
ing adapters via a lightweight adapter module followed by a linear transformation. WILDA (Juki¢ &
Snajder, [2025) fine-tunes a separate adapter for each context, achieving strong accuracy but incur-
ring heavy computational overhead, since a new adapter must be trained for every context.

Table 1: Demonstration parameterization results. Rows with a single number indicate concatenation
of all demonstrations without composition, while rows of the form axb denote composition of a
adapters, each encoding b demonstrations. Results are reported as the mean over 10 runs with the
standard deviation as a subscript. The best score within each block is highlighted in bold. COMPAS
results are statistically compared to the corresponding ICL setting; scores marked with } indicate
significance under a Wilcoxon signed-rank test (p < 0.05) with Holm—Bonferroni correction.

Llama-3.1 8B Llama-3.2 3B Qwen-2.57B
Setup / Method MMLU ARC MMLU ARC MMLU ARC
4 ICL 64.21 8 74216 57.218 62916 70.218 76.516
4 GenAda 57.61.8 69.3147 50.41_4 59.4147 59.82_1 70.5147
4 WILDA 68.809 78.207 60.8;1 66.4;- 74.004 79.609
4 COMPAS 66.70.77 76.508" 59.000 65.10s" 72.40s5" 77.20
8 ICL 65.517 75115 58.01.7 64.115 71.517 78315
8 GenAda 59.11.9 69.91.6 51.31.9 61.216 60.71.9 71.416
8 WILDA 69.80.7 78.80ps 61.2,1 6T7.405 74.807 80.0p8

8 COMPAS 67.50.5 772007 60.2:37 66.2057 73.212 78.60.7

2x4 GenAda 57.81,9 69.51‘6 50.90,7 59.41‘2 60.51,8 69.21‘6
2x4 WILDA 69.50.3 78.60.9 60.811 67.11 74104 79.80.s
2x4 COMPAS 69.1p-7 7983007 61.3127 66.8067 74.6067 80.200

12 ICL 66.01.7 75.51.5 58.81.7 64.61.5 71.81.7 77.215
12 GenAda 59.91,9 702146 51.61,9 62.51‘6 63.11,9 71.61‘2
12 WILDA 70.50.8 79.406 61.911 68.1:10 75.20.7 79.80.4
12 CoMPAS 67.21.2 78.90.0" 59.51 .2 67.20.7" 72.91.0 79.31.4

3x4 GenAda 57.31.9 70.31.6 49.81.9 59.61.6 62.01.9 69.71.6
3x4 WILDA 70.71.0 79.50.9 62.01.1 67.51.0 75.10.7 79.90.4
3x4 COMPAS 71.2:.," 801057 624057 67400 757037 80.30s"

16 ICL 66.51.7 76.01.5 59.21.7 65.21.5 72.31.7 77.61.5
16 GenAda 60.51.9 72.51.6 52.71.2 60.81.3 64214 T1.90.0
16 WILDA 71.50.7 80.4¢.3 62.60.5 68.20.3 76.10.4 80.70.8
16 COMPAS 68206 T79.10-" 62312 683047 73706 79.40s5

4x4 GenAda 57.61.9 70.61.6 50.31.9 59.91 ¢ 61.31.9 70.41.6
4x4 WILDA 71.60,6 80.50,9 62.71,1 68.3141 75.20,5 80.80_8
4x4 COMPAS 722037 81.3037 63.40-7 69.3057 771077 81.50.4"

Evaluation. We assess models on end-task performance, measuring accuracy on MMLU and ARC
and exact match (EM) and token-level F1 on HotpotQA. Faithfulness is evaluated through the KL
divergence between the teacher concatenation and the student sum, as well as token-level F1 (bag-
of-tokens). Stability is measured as the standard deviation across ten runs with different sampled
contexts. Training follows the weakly supervised protocol from §3.2] Full implementation details,
including optimization settings and hyperparameters, are deferred to Section [B]

4.2 ENCODING DEMONSTRATIONS AS PARAMETERS

We first evaluate COMPAS effectiveness in replacing in-context demonstrations with adapter param-
eters. In the k-shot setting (k € {4, 8,12,16}), demonstrations are partitioned into fixed-size blocks,
each block is encoded as an adapter, and the adapters are composed by summing their parameters.
Table [T]shows the results on MMLU and ARC-Challenge across three base models.

COMPAS consistently outperforms standard ICL, which in our setup corresponds to using the teacher
model directly, across all models and shot counts, while also exhibiting lower variance. We attribute
this robustness to weak-to-strong (W2S) generalization (Dherin et al., 2022; |Lang et al.,[2024): the
student begins with weak pseudo-labels from the teacher but progressively corrects them during
training, extending reliability from easy, locally consistent regions to harder examples.

Gains are most pronounced at higher shot counts (k € 12,16) under 3x4 and 4x4 composition
settings, where COMPAS consistently outperforms WILDA (11 out of 12 cases), despite the latter’s

Table 2: Extractive QA results on single, pair, and triplet gold contexts, averaged over 10 runs and
reported as EM/F1. Teacher (concat) evaluates the base LLM directly on concatenated gold contexts
(e.g., [c1;¢2;5¢3]). COMPAS (concat) evaluates the student using an adapter generated from the
concatenated context, G([c1; c2; c3]), while COMPAS (composed) uses the sum of adapters from
individual contexts,) . G(c;).

Setup Method LLaMA-3.18B LLaMA-3.23B Qwen-2.57B
Single (c) Teacher 70.9/82.0 65.9/78.1 69.2/80.7
g COMPAS 72.2/82.9 67.0/78.6 69.4/82.2
Teacher (concat) 69.0/80.8 64.1/76.8 67.5/79.8
Pair ([c1; c2]) COMPAS (concat) 69.4/81.1 64.5/77.0 67.9/79.5
COMPAS (composed) 71.3/82.3 66.2/78.4 69.6/80.9
Teacher (concat) 66.3/78.5 61.2/74.1 64.0/76.0
Triplet ([c1; c2;¢c3]) COMPAS (concat) 67.5/79.4 62.0/75.3 65.1/77.0
COMPAS (composed) 71.1/82.0 64.8/76.9 68.1/80.4

Table 3: COMPAS context reconstruction as token-level F1. Results are averages over 10 runs.
MMLU and ARC units are blocks of 4 demonstrations; a HotpotQA unit is a supporting paragraph.

Llama-3.1 8B Llama-3.2 3B Qwen-2.57B
Setup MMLU ARC Hotpot MMLU ARC Hotpot MMLU ARC Hotpot
Single (1 unit) 91.2 89.5 87.8 89.0 87.2 85.4 90.1 88.1 86.2
Pair (2 units) 90.3 88.9 86.0 88.1 86.3 83.5 89.4 87.5 84.3

Triplet (3 units) 88.4 86.9 83.7 86.5 84.8 81.9 87.6 85.9 82.5

use of context-specific adapter fine-tuning. We hypothesize that this advantage arises from an im-
plicit chunking—composition mechanism, where the model partitions demonstrations into manage-
able subsets. Each adapter encodes a partial context view, and their addition reconstructs the effect
of all demonstrations. As a result, COMPAS scales gracefully with the number of demonstrations:
it leverages composition to maintain strong performance in long contexts, ultimately matching or
exceeding specialized adapter fine-tuning while retaining efficiency and composability.

4.3 ENCODING CONTEXT AS PARAMETRIC MEMORY

We now evaluate COMPAS on extractive QA by treating gold evidence passages as parametric mem-
ories. On HotpotQA, each query q is paired with one or more gold passages c. When multiple pas-
sages are available (pairs or triplets), the task becomes more challenging: the model must leverage
a larger combined context and answer more queries. In these settings, we either generate a single
adapter from their concatenation or compose the adapters generated from each passage individually.
We evaluate per query, including all gold passages in either form. Results are shown in Table[2]

COMPAS consistently outperforms the teacher (base LLM) across all settings. Absolute perfor-
mance is lower on pairs and triplets — since the model must retain context for multiple queries while
being evaluated on each one separately — but the relative gains over the teacher are larger in these
harder settings. This indicates that COMPAS is particularly effective at composing and retaining
information across multiple contexts.

4.4 CONTEXT RECONSTRUCTION

Finally, we test whether composed adapters preserve the informational content of their supports by
prompting the model to reconstruct missing contexts. Using a special [RECON] token, we decode
from adapters and compute token-level F1 on MMLU, ARC, and HotpotQA. Table [3] shows that
COMPAS maintains consistently high reconstruction fidelity, with only small drops as the context
expands to pair and triplet units.

88 ICL —+— RNN I Linear mmm RNN Adapter
86l Linear Adapter 6
<
84 > 4
P82 8
3 80 3
o v 2
s) j j
. /._/ ¢ J
74
72 -2
a 8 12 16 20 24 28 32 1 2 3 a 5
Total demonstration count Difficulty level

Figure 2: Effect of generator capacity on ac- Figure 3: Accuracy deltas of different gener-
curacy with LLaMA 8B on ARC-Challenge. ators over ICL across five MMLU difficulty
Shaded areas show deviation over 10 runs. buckets (average over 10 runs for LLaMA 8B).

5 ANALYSIS

Building on the effectiveness of COMPAS, we analyze the role of generator capacity (§5.1)) and the
contribution of each loss component (§5.2)). We discuss limitations of our approach in Section [E]

5.1 CAPACITY AND WEAK-TO-STRONG GENERALIZATION

We explore three generator capacities G: Adapter (COMPAS) — corresponds to our default setup
(§3); RNN - a lightweight recurrent network which aggregates token-level encodings of ¢ before
the same linear head produces G(c); Linear — an ablation that removes the generator adapter and
recurrent aggregator, leaving a single bottleneck linear projection of a pooled context representation
(see configuration details in Section [B)).

In Figure [2, we compare the performance of generators with varying capacity as the number of
demonstrations increases. A simple linear generator initially tracks the performance of the ICL
teacher, but falls behind as more demonstrations are added, indicating limited ability to capture
multi-shot composition. The RNN generator improves on ICL and linear baselines for moderate
demonstration counts, but eventually stagnates. In contrast, the Adapter generator consistently out-
performs alternatives, and its advantage widens with larger demonstration counts. These results
highlight the importance of generator capacity for both surpassing the ICL teacher and maintaining
compositionality as context scales.

In Figure 3 we analyze the effects of W2S generalization by grouping MMLU tasks into five diffi-
culty levels (1-5). To obtain these groups, we evaluate the base LLaMA 8B with 16 shots on each
MMLU subtask and sort them by accuracy, partitioning into five bins. We then evaluate genera-
tors in a 4x4 setup (16 demonstrations in total). Across levels 1-3, all generator variants improve
over ICL, with gains ordered by capacity (Adapter, RNN, and Linear). At higher difficulty, dif-
ferences sharpen: the linear generator collapses at level 4-5, RNN stagnates and drops at level 5,
while Adapter continues to improve, achieving the largest gains on the hardest tasks. These results
show that sufficient generator capacity is crucial for surpassing the ICL teacher and maintaining
additive composition as complexity grows. COMPAS scales with task difficulty, enhancing W2S
generalization on the hardest tasks.

5.2 IMPORTANCE OF LOSS COMPONENTS

To better understand the contribution of each training signal, we perform an ablation study on the
loss components of COMPAS. Table] reports results on MMLU, ARC-Challenge, and HotpotQA
using the LLaMA 8B backbone. We compare the full objective (4)) to variants with removed com-
ponents, isolating their effect on overall performance.

We always include Lgr, since weak supervision from the teacher is essential for transferring con-
textual information into the student. Dropping Lapp or Lrecon degrades performance and shows
that they play complementary roles. Lapp reduces additivity error () and stabilizes multi-context
composition. Lrgcon provides smaller but consistent gains while also enabling context reconstruc-
tion. Removing both terms (L app and Lrecon) leads to the most pronounced drop, confirming that

Table 4: Ablation of loss function components. Results are on MMLU and ARC (4 x4 demos) and
HotpotQA (EM/F1, pairs). We report averages over 10 seeds with standard deviations as subscripts.

Objective Variant MMLU ARC-Challenge HotpotQA (EM/F1)

Full 69.1 79.3 71.3/82.3
— Lapp 64.8 75.7 68.2/79.3
— LRECON 66.4 77.1 70.2/80.8
Lst only 61.2 71.8 65.9/76.4

they jointly support the effectiveness of the student. Overall, the full objective yields the strongest
results, consistent with the theory in §@

6 RELATED WORK

ICL and parameterized adaptation. Analyses show ICL often exploits surface-level cues rather
than learning task semantics (Min et al.| [2022)), and that transformers can internally implement
simple learning algorithms during inference (Xie et al., [2021; |Akyiirek et al.l 2022)). In parallel,
parameter-efficient fine-tuning (PEFT) replaces long prompts with compact trainable modules such
as soft/prefix prompts (Li & Liang, [2021} [Lester et al., [2021)) or low-rank adapters (Hu et al., [2021)).
Recently, [Hong et al.| (2024) proposed mixtures of in-context learners to efficiently combine sub-
sets of demonstrations. Like PEFT, our work keeps inference on the query only, but instead of
concatenating demonstrations, we translate them into compositional adapters.

Composing and merging parameters. Another line of research explores how to compose learned
modules or entire models. In the adapter setting, AdapterFusion learns to fuse multiple task adapters
non-destructively (Pfeiffer et al., [2021)), while MAD-X composes language and task adapters for
cross-lingual transfer (Pfeiffer et al.|[2020). For full model weights, model soups average fine-tuned
checkpoints to improve robustness (Wortsman et al.l2022)), and task vectors use weight differences
to add or subtract task behaviors (Ilharco et al.,2022). These approaches combine pre-trained mod-
ules or models after the fact. In contrast, we generate adapters on-the-fly from context and train them
explicitly for additivity, so that parameter-space composition mirrors text concatenation.

Generating parameters from context. HyperNetworks generate parameters of one network using
another (Ha et al.l 2017). |Ansell et al.|(2021) introduced MAD-G, where a hypernetwork generates
language adapters conditioned on language embeddings. Subsequent work extended this idea to few-
shot adaptation (Zhang et al.,|2023};/Chen et al.,[2025)). Our method can be viewed as a hypernetwork
explicitly designed for compositionality: a generator maps support encodings into LoRA parameters,
while compositional distillation and a linearity regularizer enforce that adapter addition in parameter
space approximates context concatenation in input space. This aligns with broader efforts to impose
linear additive structure on representations (Sulc| 2025)), but uniquely emphasizes parameter-space
composition as a scalable route to context integration.

7 CONCLUSION

We tackled the challenges of efficiency and instability that arise when adapting LLMs to tasks requir-
ing multiple demonstrations or retrieved passages. To address these issues, we introduced COMPAS,
a meta-learning teacher—student framework that translates contexts into compositional adapters.
COMPAS encodes context into adapter parameters that can be algebraically combined, allowing pro-
cessing of complex queries without input concatenation. In this way, we enable efficient handling of
large context sets by generating adapters independently and composing them in parameter space, re-
ducing inference cost, mitigating long-context degradation, and circumventing context window lim-
itations. A reconstruction objective promotes safety and security, ensuring that the input context is
decodable from the adapter parameters. COMPAS consistently outperforms ICL and prior generator-
based approaches on multi-choice and extractive question answering. Taken together, these results
establish composable context parametrization as a scalable approach for adapting LLMs.

REPRODUCIBILITY STATEMENT

Along with the description of our method in Section [3| and the experimental setup in Section
we also provide comprehensive details to ensure reproducibility. All datasets used (MMLU, ARC-
Challenge, HotpotQA) are publicly available and described in Section 4.1 Model configurations,
optimization settings, and training schedules are fully specified in Section|B} along with the specified
computing infrastructure. Theoretical results, including the proof of Theorem|[T]and its corollary, are
presented in Section[A] Prompt templates for all benchmarks are provided in Section[D] In addition,
we include code in the supplementary material and will publish the repository publicly after the
review process. Collectively, these resources allow independent reproduction and verification of our
experiments and analyses.

REFERENCES

Ekin Akyiirek et al. What learning algorithms does in-context learning perform? In NeurIPS, 2022.

Alan Ansell, Edoardo Maria Ponti, Jonas Pfeiffer, Sebastian Ruder, Goran Glavas, Ivan Vuli¢,
and Anna Korhonen. Mad-g: Multilingual adapter generation for efficient cross-lingual
transfer. In Findings of EMNLP, 2021. URL https://aclanthology.org/2021.
findings-emnlp.410/.

Sebastian Borgeaud, Arthur Mensch, Jordan Hoffmann, Trevor Cai, Eliza Rutherford, Katie Mil-
lican, George van den Driessche, Jean-Baptiste Lespiau, Bogdan Damoc, Aidan Clark, Diego
de Las Casas, Aurelia Guy, Jacob Menick, Roman Ring, Tom Hennigan, Saffron Huang, Matthew
Jones, Albin Cassirer, Andrew Brock, Michela Paganini, Geoffrey Irving, Denis Lukovnikov,
Nando de Freitas Lopes, Oriol Vinyals, Laurent Sifre, and Jack W. Rae. Improving lan-
guage models by retrieving from trillions of tokens. Nature, 603(7902):587-593, 2022. doi:
10.1038/s41586-022-04566-9.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in Neural Information Processing Systems (NeurIPS), 2020.

Tong Chen, Hao Fang, Patrick Xia, Xiaodong Liu, Benjamin Van Durme, Luke Zettlemoyer, Jian-
feng Gao, and Hao Cheng. Generative adapter: Contextualizing language models in parameters
with a single forward pass. In International Conference on Learning Representations (ICLR),
2025. URL https://openreview.net/forum?id=bc3sUsS6ck.

Kyunghyun Cho, Bart van Merriénboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Hol-
ger Schwenk, and Yoshua Bengio. Learning phrase representations using rnn encoder—decoder for
statistical machine translation. In Proceedings of the 2014 Conference on Empirical Methods in
Natural Language Processing (EMNLP), pp. 1724—1734. Association for Computational Linguis-
tics, 2014. doi: 10.3115/v1/D14-1179. URL https://aclanthology.org/D14—-1179.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv:1803.05457, 2018.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, volume 1, pp. 4171-4186. Association for Computational Linguistics, 2019. doi:
10.18653/v1/N19-1423.

Benoit Dherin, Michael Munn, Mihaela Rosca, and David Barrett. Why neural networks find sim-
ple solutions: The many regularizers of geometric complexity. Advances in Neural Information
Processing Systems, 35:2333-2349, 2022.

Abhimanyu Dubey, Rohan Taori, Aakanksha Goyal, and et al. The llama 3 herd of models. arXiv
preprint arXiv:2407.07895, 2024.

10

https://aclanthology.org/2021.findings-emnlp.410/
https://aclanthology.org/2021.findings-emnlp.410/
https://openreview.net/forum?id=bc3sUsS6ck
https://aclanthology.org/D14-1179

David Ha, Andrew M. Dai, and Quoc V. Le. Hypernetworks. In ICLR, 2017. URL https:
//arxiv.org/abs/1609.09106k

Xuandong He, Antonios Anastasopoulos, Luke Zettlemoyer, and Xiang Chen. Towards a unified
view of parameter-efficient transfer learning. In Advances in Neural Information Processing Sys-
tems (NeurlIPS), 2022.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
Steinhardt. Measuring massive multitask language understanding. In /CLR, 2021. URL https:
//arxiv.org/abs/2009.03300.

Giwon Hong et al. Mixtures of in-context learners. arXiv preprint arXiv:2405.XXXXX, 2024.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bryan Morrone, Quentin de Laroussilhe, An-
drea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for nlp.
In International Conference on Machine Learning (ICML), 2019.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv:2106.09685,
2021.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models, 2022.

Gabriel Ilharco, Marco Tulio Ribeiro, Mitchell Wortsman, Suchin Gururangan, Ludwig Schmidt,
Hannaneh Hajishirzi, and Ali Farhadi. Editing models with task arithmetic. arXiv:2212.04089,
2022.

Alon Jacovi and Yoav Goldberg. Towards faithfully interpretable nlp systems: How should we
define and evaluate faithfulness? In Proceedings of the 58th Annual Meeting of the Association
for Computational Linguistics, pp. 4198-4205. Association for Computational Linguistics, 2020.
doi: 10.18653/v1/2020.acl-main.386.

Josip Jukié¢ and Jan Snajder. Disentangling latent shifts of in-context learning with weak supervision,
2025. URL https://arxiv.org/abs/2410.01508.

Rabeeh Karimi Mahabadi, James Henderson, and Sebastian Ruder. Compacter: Efficient low-rank
hypercomplex adapter layers. In Advances in Neural Information Processing Systems (NeurIPS),
2021.

Jannis Kossen, Simran Arora, Chengxu Wong, Kelly Zhou, Thibault Sellam, David Blei, David
Sontag, Behnam Neyshabur, Victor Veitch, and Petar Velickovi¢. Active testing: Model testing
with guardrails. In International Conference on Machine Learning (ICML), 2023.

Andrew Lampinen, Ishita Dasgupta, Kory Mathewson Lee, Lawrence Chan, Antonia Creswell,
James L. McClelland, Murray Shanahan, and Felix Hill. Can language models learn from expla-
nations in context? Transactions of the Association for Computational Linguistics, 10:539-554,
2022. doi: 10.1162/tacl_a_00475.

Hunter Lang, David Sontag, and Aravindan Vijayaraghavan. Theoretical analysis of weak-to-strong
generalization. In The Thirty-eighth Annual Conference on Neural Information Processing Sys-
tems, 2024. URL https://openreview.net/forum?id=HOShOSKk1E.

Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient prompt
tuning. In EMNLP, 2021. URL https://aclanthology.org/2021.emnlp-main.
243/.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal,
Heinrich Kiittler, Mike Lewis, Wen-Tau Yih, Tim Rocktéschel, Sebastian Riedel, and Douwe
Kiela. Retrieval-augmented generation for knowledge-intensive nlp tasks. In Advances in Neural
Information Processing Systems (NeurlPS), pp. 9459-9474, 2020.

Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation. In
ACL,2021. URL https://aclanthology.org/2021.acl-long.353/.

11

https://arxiv.org/abs/1609.09106
https://arxiv.org/abs/1609.09106
https://arxiv.org/abs/2009.03300
https://arxiv.org/abs/2009.03300
https://arxiv.org/abs/2410.01508
https://openreview.net/forum?id=HOSh0SKklE
https://aclanthology.org/2021.emnlp-main.243/
https://aclanthology.org/2021.emnlp-main.243/
https://aclanthology.org/2021.acl-long.353/

Nelson F Liu, Victoria Pospelova, Omer Levy, Christopher D Manning, and Graham Neubig. Lost
in the middle: How language models use long contexts. In Transactions of the Association for
Computational Linguistics (TACL), 2023.

Sewon Min, Xinxi Lyu, Ari Holtzman, Mikel Artetxe, Mike Lewis, Hannaneh Hajishirzi, and Luke
Zettlemoyer. Rethinking the role of demonstrations: What makes in-context learning work? In
EMNLP, 2022. URL https://arxiv.org/abs/2202.12837.

Sewon Min, Patrick Lewis, Hannaneh Hajishirzi, Wen-tau Yih, and Luke Zettlemoyer. Fact or
fiction: Benchmarking faithfulness of natural language explanations in NLP. In Proceedings
of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), pp. 1579-1604. Association for Computational Linguistics, 2023. doi: 10.18653/v1/
2023.acl-long.90.

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser Kel-
ton, Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul Christiano, Jan Leike,
and Ryan Lowe. Training language models to follow instructions with human feedback. arXiv
preprint arXiv:2203.02155, 2022.

Jonas Pfeiffer, Ivan Vuli¢, Iryna Gurevych, and Sebastian Ruder. Mad-x: An adapter-based frame-
work for multi-task cross-lingual transfer. In EMNLP,2020. URLhttps://aclanthology.
org/2020.emnlp-main.617/.

Jonas Pfeiffer, Aishwarya Kamath, Andreas Riicklé, Kyunghyun Cho, and Iryna Gurevych. Adapter-
fusion: Non-destructive task composition for transfer learning. In EACL, 2021. URL https:
//aclanthology.org/2021.eacl-main.39/.

Jonas Pfeiffer, Sebastian Ruder, Ivan Vuli¢, and Edoardo M. Ponti. Modular deep learning. CoRR,
abs/2302.11529, 2023. URL https://arxiv.org/abs/2302.11529.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified text-
to-text transformer. In Proceedings of the 37th International Conference on Machine Learn-
ing, ICML’20, pp. 1409-1418. PMLR, 2020. URL http://proceedings.mlr.press/
v119/raffel20a.htmll

Jan Sulc. Learning linear additive representations in sequential models. arXiv preprint
arXiv:2509.12188, 2025.

Miles Turpin, Julian Michael, Ethan Perez, and Samuel R. Bowman. Language models don’t always
say what they think: Unfaithful explanations in chain-of-thought prompting. In Proceedings
of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), pp. 5725-5753. Association for Computational Linguistics, 2023. doi: 10.18653/v1/
2023.acl-long.315.

Hanzhi Wang, Ming Ding, Weiqi Zheng, Zhi Zheng, and Jie Tang. Meta-adapters: Parameter-
efficient few-shot transfer from pretrained language models, 2023.

Mitchell Wortsman, Gabriel Ilharco, Samir Yitzhak Gadre, Rebecca Roelofs, Raphael Gontijo-
Lopes, Ari S. Morcos, Hongseok Namkoong, Ali Farhadi, Yair Carmon, Simon Kornblith, and
Ludwig Schmidt. Model soups: averaging weights of multiple fine-tuned models improves accu-
racy without increasing inference time. In ICML, 2022. URL https://arxiv.org/abs/
2203.05482.

Sang Michael Xie et al. Explanation of in-context learning as implicit bayesian inference. In /CLR,
2021.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin Yang,
Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li, Tianyi Tang,
Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yu Wan,

12

https://arxiv.org/abs/2202.12837
https://aclanthology.org/2020.emnlp-main.617/
https://aclanthology.org/2020.emnlp-main.617/
https://aclanthology.org/2021.eacl-main.39/
https://aclanthology.org/2021.eacl-main.39/
https://arxiv.org/abs/2302.11529
http://proceedings.mlr.press/v119/raffel20a.html
http://proceedings.mlr.press/v119/raffel20a.html
https://arxiv.org/abs/2203.05482
https://arxiv.org/abs/2203.05482

Yugiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report, 2025. URL
https://arxiv.org/abs/2412.15115.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William Cohen, Ruslan Salakhutdinov,
and Christopher D. Manning. Hotpotqa: A dataset for diverse, explainable multi-hop question
answering. In EMNLP, 2018. URL |https://aclanthology.org/D18-1259/.

Jingqing Zhang, Sheng Zhang, Yuwei Xie, Shuxiao Chen, and William Yang Wang. Hyperpeft:
Hypernetwork-based parameter-efficient fine-tuning, 2023.

13

https://arxiv.org/abs/2412.15115
https://aclanthology.org/D18-1259/

A COMPOSITIONALITY BOUND
A.1 PROOF OF THEOREMII
Let ¢1 = G(c1), p2 = G(c2), and 12 = G([cq; c2]). We aim to bound

1£2'9* (a) - £r([ex; eaia) | -

The Euclidean space (RIV || - ||2) satisfies the triangle inequality: for any a,b,c € RIV,
la —cllz < fla=blla + |[b—cllo, (5)
where we also use absolute homogeneity (symmetry) of the norm, i.e., ||b — ¢||2 = ||c — b]|2 since

[=v]l2 = [[v]|2- Apply @) with
a=£"(q), b=f£*(q), c=fr(lci;cosa)),

to obtain
[£217%2(q) — £r([cr; e d)) 2
< [£242 (q) — £22(@)ll2 + [1£22(a) — fr(fer;caia))]o - 6)

Term (I) Term (II)

By parameter sensitivity (3)) and generator additivity error (2)),
Term (I) < L||¢p1 + ¢p2 — p12ll2 < L. @)

Apply the student—teacher error (I) to the concatenated context [c1; ca]:
Term (I) < ¢([cy; ca)). (8)

Combining (@), (7), and (8] yields

|88 (@) — fr(lesieaial)le < L+ e(fers ca)),
which proves Theorem [T} O

Corollary 1 (Extension to k contexts). By induction, Theorem[I|extends to any sequence of contexts
C1,...,Ck with corresponding adapters ¢; = G(c;):

ki
1£2= ¥ (q) — fr(fcrs - sesa))lls < (k= 1)Ly + e(fers. .. cx)).
A.2 GEOMETRIC INTERPRETATION

Adapters ¢ = G(c) can be viewed as vectors in the parameter space ®. In the ideal case, G em-
beds contexts into a flat subspace where concatenation in input space corresponds exactly to vector
addition in parameter space. The deviation terms then acquire a geometric meaning: 7 measures the
generator’s departure from additivity, and €([c1; c2]) captures the student’s misalignment with the
teacher on concatenated contexts. The Lipschitz constant L governs how deviations in adapter space
propagate into the model’s output space. Compositionality can therefore be understood as flattening
the contextual geometry into a nearly linear embedding, with small n and e ensuring that adapter
addition faithfully mirrors context concatenation.

B EXPERIMENTAL SETUP AND HYPERPARAMETERS

B.1 DATA

For MMLU (Hendrycks et al.| 2021)), which comprises 59 subject-specific subsets, we report accu-
racy averaged across all subsets. For weak supervision during generator optimization, we sample
queries and contexts from the validation split without using ground-truth labels, while demonstra-
tions are drawn (with labels) from the training split. Evaluation is performed on the held-out test
split.

14

Table 5: Parameter counts for base models and our framework. Student parameters correspond to
LoRA adapters attached to the base LM, while generator parameters denote the generator network
itself. Generator adapter counts indicate the size of parameters produced per context. Total trainable
parameters are the sum of student and generator parameters.

Model Base LLM Student adapter Generator adapter Generator (total)
Llama 3.1 (8B) 8.03B 21M 42M 210M
Llama 3.2 (3B) 3.19B 4.2M 8.4M 42M
Qwen 2.5 (7.6B) 7.61B 20M 40M 180M

For ARC-Challenge (Clark et al.| 2018)), we follow the same setup: unlabeled validation exam-
ples provide queries and contexts for weak supervision, labeled demonstrations are drawn from the
training set, and performance is reported on the test set.

For HotpotQA (Yang et al 2018]), we restrict context inputs to the relevant gold supporting pas-
sages associated with each question. We sample 10k examples stratified across difficulty levels, and
partition them into 5k for training, 3k for validation, and 2k for testing.

B.2 MODELS

We summarize the main characteristics of the base LMs used in our experiments in Table[5] together
with the sizes of the student and generator adapters. We use the bf 1oat 16 half-precision format
for all model parameters.

B.3 METHODS

For GenAda (Chen et al., [2025) and WILDA (Juki¢ & §najder, 2025)), we use the default hyperparam-
eters and follow the training procedures described in the respective papers. To ensure comparability,
we adopt an identical configuration for adapter sizes and target modules across all methods; these
design choices are detailed in the following section.

B.4 HYPERPARAMETERS

Optimization. For each dataset and model combination, we train the generator parameters with
AdamW (weight decay 0.01) for 10 epochs. The learning rate is set to 10~* with 5% linear warmup
followed by cosine decay.

Loss weights. We set Ast = 1.0, Aapp = 0.5, and Aggcon = 0.1. These values balance (i)
fidelity to teacher logits through student—teacher alignment, (ii) enforcement of compositionality
via additivity regularization, and (iii) auxiliary reconstruction for stability and faithfulness, while
avoiding over-regularization.

Adapter configuration. We insert LoRA adapters into all attention projections (g, k, v, and o) as
well as into the MLP down- and up-projection layers. For the generator, we use a uniform rank of 32
across all modules, while for the student we use rank 16. Following standard practice, each LoRA
module applies a scaling factor «, such that the effective weight update is = AB. We set @ = 32
for generator adapters and o = 16 for student adapters, ensuring balanced contribution of low-rank
updates relative to their respective ranks.

Reconstruction under composition. In the compositional setting, where multiple adapters are
generated for different contexts and summed, we compute the reconstruction F1 score in a
permutation-invariant fashion. This adjustment is necessary because the generator is explicitly in-
centivized to be commutative, i.e., G([c1;c2]) = G(c1) + G(cz) = G(c2) + G(c1). Concretely,
for multiple contexts, we evaluate reconstruction across all possible permutations and report the
score corresponding to the most successful ordering. This ensures that the metric reflects content
preservation rather than sensitivity to input order.

15

Table 6: Position-aware reconstruction evaluation. We report positional ROUGE-L F1 for context
pair permutations from HotpotQA for the commutative baseline without positional encoding (No-
PE) and a simple position-aware variant (PE-Tag), and slot-based positional embeddings (Slot-PE).
Scores are mean with standard deviation as subscripts over 10 runs.

LLaMA-3.18B LLaMA-3.23B Qwen-2.57B

No-PE (commutative linear) 62.52.0 50.15.9 60.45 1
Slot-PE 87.60.9 T1.156 85.01.4

Generator variants. In addition to the default Adapter generator used in COMPAS, we consider
two alternatives for ablation. The RNN variant employs a lightweight two-layer gated recurrent unit
(GRU; Cho et al.}|[2014) with hidden size 256 to aggregate token-level context representations before
projecting them into a compact latent space, followed by an up-projection to the full set of student
adapter parameters. The Linear variant removes both the GRU and the generator adapter; instead,
the pooled context representation is passed through a single linear bottleneck and then expanded
directly into the student adapter parameter space.

B.5 COMPUTING INFRASTRUCTURE

We conducted our experiments on a mix of local and cluster resources. Local training was performed
on a workstation with an AMD Ryzen Threadripper 3970X 32-Core CPU, 256GB RAM, and 2x
NVIDIA GeForce RTX 3090 GPUs (24GB each). Larger-scale runs were executed on a compute
cluster equipped with 2x NVIDIA A100 GPUs (40GB each).

C ADDITIONAL EXPERIMENTS

C.1 POSITIONAL ENCODING AND ORDER SENSITIVITY

By design, our generator enforces commutativity, i.e., G([c1;c2]) = G(c1) + G(ea) = G(eo) +
G(c1), which is desirable for tasks where order invariance is beneficial and directly reduces 7. The
trade-off is that strict commutativity removes the ability to encode order.

As a proof of concept, we conduct an experiment on HOTPOTQA using pairs of supporting contexts.
We augment the generator with slot embeddings, i.e., for slot ¢ we add a learnable vector s; to the
corresponding adapter delta:

bi = G(c;) + si, ® = Z&z &)

This introduces positional variance while preserving linear composition, thereby allowing the model
to distinguish [c1; o] from [co; ¢1].

Results in Table 6] suggest that order sensitivity can be layered on top of the commutative backbone
when tasks require it, though we leave a systematic study to future work.

C.2 EFFICIENCY

We compare the computational and memory efficiency of COMPAS to standard ICL prompting using
LLaMA 8B on ARC-Challenge. Table [/| reports FLOPs speedup (relative to ICL with the same
number of demonstrations k) and peak inference memory. Results are averaged over 10 runs on a
sample of 1k test queries. As expected, the memory cost of ICL grows linearly with the number
of demonstrations, since the model must re-encode all tokens at inference. In contrast, COMPAS
amortizes context encoding into a one-shot parameter generation step, so inference depends only
on the query length. This yields substantial speedups that increase with k: 2.2x at 4-shot, 3.7x at
12-shot, and 4.1x at 16-shot. Memory usage shows a similar trend, with ICL increasing steadily
as more demonstrations are added, while COMPAS remains nearly constant across different k. This
demonstrates that COMPAS not only improves accuracy, but also yields more efficient and scalable
inference by decoupling compute and memory from context length.

16

Table 7: Efficiency comparison of ICL vs. COMPAS with LLaMA 8B. We report speedups in
FLOPs for COMPAS inference relative to ICL with k demonstrations, and peak inference mem-
ory (GB). Results are averaged over 10 runs on ARC-Challenge. COMPAS replaces long-context
prompts with adapters, reducing both compute and memory usage.

Speedup (FLOPs rel. to ICL@Fk) T Peak memory (GB) |

Method 4 8 12 16 4 8 12 16
ICL (prompting) 1.0x 1.0x 1.0x 1.0x 22.1 273 335 379
COMPAS 2.2x 3.1x 3.7x 4.1x 172 179 18.1 194

D PROMPT TEMPLATES

D.1 TEMPLATES FOR MULTI-CHOICE QUESTION ANSWERING

Generic prompt template MMLU and ARC-Challenge
Demonstrations:

Question: {Previous Question 1}
Answer choices:

(A: {Choice Al}),

(B: {Choice B1l}),

(C: {Choice C1}),

(D: {Choice D1})
Answer: (Correct Answer 1)

Question: {Previous Question 2}
Answer choices:

(A: {Choice A2}),

(B: {Choice B2}),

(C: {Choice C2}),

(D: {Choice D2})

Answer: (Correct Answer 2)

Query:

Question: {Current Question}
Answer choices:
(A: {Choice A})
(B: {Choice B})
(C: {Choice C})
(D: {Choice D})
Answer: (

D.2 MMLU EXAMPLES

e D

Example for MMLU abstract_algebra

Demonstrations:

Question: Find the maximum possible order for an element of S_n for
n = 10.

Answer choices:

(A: 6),

(B: 12),

(C: 30),

(D: 105)

17

Answer: (C: 30)

Question: Compute the product in the given ring. (2,3) (3,5) in
x 7Z_9

Answer choices:

(A: (1,1)),

(B: (3,1)),

(C: (1,6)),

(D: (3,6))

Answer: (D: (3,6))

Query:

Question: If (G, .) is a group such that (ab) -1 = a"-1b"-1

for all a, b in G, then G is a/an
Answer choices:

(A: commutative semigroup),

(B: abelian group),

(C: non-abelian group),

(D: None of these)

Answer: (

Z_

5

D.3 ARC-CHALLENGE EXAMPLES

Example for ARC-Challenge

Demonstrations:

Question: Based on their locations in the periodic table,
which element has chemical properties most similar

to those of calcium, Ca?

Answer choices:

(A: beryllium, Be),

(B: potassium, K),

(C: titanium, Ti),

(D: yttrium, Y)

Answer: (A: beryllium, Be)

Question: Which term best describes the life cycle of an insect
that reaches the adult stage without being a pupa?

Answer choices:

(A: incomplete metamorphosis),

(B: complete metamorphosis),

(C: alternation of generations),

(D: spontaneous mutation)

Answer: (A: incomplete metamorphosis)

Query:

Question: Which property of a mineral can be determined
just by looking at it?

Answer choices:

(A: luster),

(B: mass),

(C: weight),

(D: hardness)

Answer: (

18

D.4 HoTPOTQA EXAMPLE

Example for HotpotQA

Question:
Who invented the type of script used in autographs?

Supporting Context:

(Cuneiform script):

Cuneiform script, one of the earliest systems of writing,
was invented by the Sumerians. It is distinguished by its
wedge-shaped marks on clay tablets, made by means of a blunt
reed for a stylus. The name "cuneiform" itself simply means
"wedge shaped".

(Autograph in Assyriology):

An autograph in Assyriology is the hand-copy of a cuneiform
clay-tablet. Producing an autograph is often the first step of
a tablet’s archaeological interpretation and the autograph is
frequently the authoritative form that is published as source
material. Autographing the text is followed by transliteration,
transcription and translation.

Answer: Sumerians

E LIMITATIONS

Order-insensitivity of composition. In COMPAS, parameter-space composition is strictly com-
mutative and associative, since adapters are summed without regard to order. This differs from
textual concatenation, where (c4,cp) and (cp, c4) may yield different interpretations. While our
results show benefits of order-robustness (mitigating prompt-order sensitivity), the lack of positional
information may reduce expressivity in tasks where sequence order is essential, such as instruction
chaining or narrative reasoning. In additional experiments, we provide a proof of concept show-
ing that positional information can be encoded within the generator, demonstrating feasibility but
leaving systematic exploration to future work.

Generator robustness. Our generator is trained on a meta-distribution of contexts and shows
cross-domain transfer, but generalization to entirely novel domains or reasoning styles is not guar-
anteed. In particular, low-resource or highly specialized tasks may expose brittle adaptation.

Linearity vs. expressivity. The framework enforces strict linear compositionality of adapters
to ensure interpretability and additivity guarantees. However, some tasks inherently require non-
linear interactions between contexts (e.g., resolving contradictions or multi-hop reasoning). In such
cases, COMPAS may face a trade-off between maintaining modularity and achieving task-optimal
integration.

Scalability and efficiency trade-offs. Although COMPAS replaces long contexts with compact
adapters, the generator itself introduces a large up-projection layer whose parameter count grows
with the size of the student adapters. This overhead is modest relative to the base LM but still
significant. Scaling to even larger backbones or more complex adapter schemes may therefore incur
efficiency and memory costs that partially offset the gains from shorter inference contexts.

LLM USAGE DISCLOSURE

In preparing this manuscript, we made limited use of LLMs to polish the writing at the sentence
level. This assistance was limited to stylistic improvements such as grammar, clarity, and concise-
ness.

19

	Introduction
	Adapter Compositionality
	Setup
	Compositionality Bound

	Method
	Context-to-Adapter Generator
	Loss Function Components

	Experiments
	Experimental Setup
	Encoding Demonstrations as Parameters
	Encoding Context as Parametric Memory
	Context Reconstruction

	Analysis
	Capacity and Weak-to-Strong Generalization
	Importance of Loss Components

	Related Work
	Conclusion
	Compositionality Bound
	Proof of Theorem 1
	Geometric interpretation

	Experimental Setup and Hyperparameters
	Data
	Models
	Methods
	Hyperparameters
	Computing Infrastructure

	Additional Experiments
	Positional Encoding and Order Sensitivity
	Efficiency

	Prompt Templates
	Templates for multi-choice question answering
	MMLU Examples
	ARC-Challenge Examples
	HotpotQA Example

	Limitations

