
TakeLab Retriever: AI-Driven Search Engine
for Articles from Croatian News Outlets

David Dukić† Marin Petričević Sven Ćurković Jan Šnajder
TakeLab, Faculty of Electrical Engineering and Computing, University of Zagreb

Abstract

TakeLab Retriever is an AI-driven search en-
gine designed to discover, collect, and semanti-
cally analyze news articles from Croatian news
outlets. It offers a unique perspective on the
history and current landscape of Croatian on-
line news media, making it an essential tool for
researchers seeking to uncover trends, patterns,
and correlations that general-purpose search
engines cannot provide. TakeLab retriever uti-
lizes cutting-edge natural language processing
(NLP) methods, enabling users to sift through
articles using named entities, phrases, and top-
ics through the web application.1 This techni-
cal report is divided into two parts: the first
explains how TakeLab Retriever is utilized,
while the second provides a detailed account
of its design. In the second part, we also ad-
dress the software engineering challenges in-
volved and propose solutions for developing a
microservice-based semantic search engine ca-
pable of handling over ten million news articles
published over the past two decades.

1 Introduction

The large volume of news content generated daily
and distributed through online outlets far surpasses
human cognitive capacity, making it challenging to
keep up with all published articles, let alone iden-
tify which ones are worth reading. While general-
purpose search engines such as Google, Bing, and
DuckDuckGo make accessing news articles eas-
ier, they often produce incomplete and biased re-
sults. Typically, these engines leave users uncertain
about which articles are excluded from the results
list, how search results are ranked, and why cer-
tain content is prioritized. Furthermore, general-
purpose search engines often provide access to only
a subset of the articles that are still available on
publishers’ websites, with no access to the results

†Corresponding author: david.dukic@fer.hr
1Takelab Retriever web application is up and running. You

can try it out here https://retriever.takelab.fer.hr.

archive. These limitations are not confined to lay-
man users; they also affect researchers in the social
sciences, including political scientists, media ana-
lysts, psychologists, and sociologists, who depend
on search engine results to analyze news content
in their studies. Studies that rely on the results of
general-purpose search engines often use samples
that are biased, non-random, or too small to be rep-
resentative. Furthermore, general-purpose search
engines often yield different results for the same
query. For instance, Lewandowski (2015) showed
that Google and Bing produce different search re-
sults, particularly when comparing informational
and navigational queries, with the difference being
more pronounced for navigational queries. An-
other challenge arises from the focus on develop-
ing search engines for widely spoken languages,
such as English, often leading to less precise results
for lower-resource languages, including Slavic lan-
guages like Croatian. In these cases, even when
the retrieved article sample is representative, au-
tomatically analyzing the content of these articles
remains problematic.

To identify the challenges faced by social science
researchers who analyze news media content, par-
ticularly those engaged in the predominantly man-
ual process of gathering, organizing, and interpret-
ing large volumes of media data, we consulted with
researchers who regularly analyze articles from
Croatian news outlets, collecting their insights and
feedback. Even the tech-savvy researchers relied
on results from general-purpose search engines,
manually collecting articles and conducting their
analyses using spreadsheets. In the best cases, these
manually collected articles were analyzed using
open-source data mining toolkits such as Orange2

or more specialized but language-limited closed-
source tools such as Communalytic.3 The feed-

2https://orangedatamining.com
3https://communalytic.com

1

ar
X

iv
:2

41
1.

19
71

8v
1 

 [
cs

.C
L

] 
 2

9 
N

ov
 2

02
4

https://retriever.takelab.fer.hr
https://orangedatamining.com
https://communalytic.com


back we received highlighted a clear need for a
search engine capable of automatically collecting
and semantically analyzing articles from relevant
Croatian news outlets. Such a tool would allow re-
searchers to work with comprehensive collections
of articles or sample from them, ensuring access to
unbiased data without the need for time-consuming
manual searches related to their research questions.
Equally important, we identified a need for ad-
vanced semantic analysis of the articles’ content,
going beyond basic word frequency methods or
general-purpose data mining toolkits.

Motivated by these findings, we developed a
specialized semantic search engine, TakeLab Re-
triever, which we describe in detail in this report.
Designed for real-time, automatic retrieval, con-
tent extraction, and semantic analysis, TakeLab Re-
triever is an AI-driven search engine that processes
articles from Croatian news outlets using state-of-
the-art natural language processing (NLP) models.
These include core, lower-level linguistic process-
ing models such as part-of-speech (POS) tagging,
tokenization, and dependency parsing models, as
well as higher-level models such as the named en-
tity recognition (NER) model, a named entity link-
ing (NEL) model, and a multi-label topic model.
The results from these models enhance the quality
of semantic search of articles and enable the pre-
sentation of articles and by combining various tags
assigned to each article, such as named entities,
topics, and phrases.

TakeLab Retriever is unbiased, more precise,
and better tailored for Croatian news article re-
trieval and analysis than general-purpose search
engines. As of November 2024, it analyzes a vast
archive of ten million news articles, with thousands
more added daily. The advanced NLP methods
and language models integrated into the search en-
gine enable it to support the precise and unbiased
retrieval of information for specific research ques-
tions. Moreover, TakeLab Retriever provides an
in-depth view of the history and current landscape
of online Croatian news, with intuitive visualiza-
tions built into a user-friendly web application. By
updating and indexing new articles daily, TakeLab
Retriever sets a new standard for media research
in Croatia, offering deeper insights into trends, pat-
terns, and correlations within online news content.
To our knowledge, no similar solutions exist for
Croatian news outlets.

2 Using the Search Engine

TakeLab Retriever is primarily intended for re-
searchers (such as political scientists, media an-
alysts, psychologists, and sociologists) who wish
to analyze news media content. TakeLab Retriever
can be used to analyze comprehensive and un-
biased article collections pertinent to specific re-
search questions. The search engine is available
to both affiliated and independent researchers for
non-commercial use. It has been available to the
public since November 2022. Currently (November
2024), the search engine analyzes the content from
33 Croatian news outlets. Table 1 shows scraped
article counts by news outlets from the database
(an additional nine news outlets are crawled but not
shown in the web application).

2.1 Article Collection

With TakeLab Retriever, we located and processed
more than ten million unique article URLs on 42
regional news outlets. Figure 1a shows the 30-
day rolling average number of published articles
over time. We discovered articles from the early
2000s until today (November 2024). The counts
suggest that more content is being published on-
line as the years go by. However, as we move
into the history of news outlets, the number of dis-
covered articles drops. While this can be partially
explained by regional outlets publishing less con-
tent two decades ago, the increasing trend is mostly
an artifact of how the articles are collected. Specif-
ically, we collect new articles by following links
from those we have already visited. These links be-
come increasingly sparse as we move back in time,
as newer articles rarely link to older ones, making
it more difficult to locate and retrieve archived con-
tent. Starting with articles published from 2018
onwards, we can locate, on average, between 2000
and 3000 articles published each day.

We started crawling the content intensively in
2022, starting from the seed URLs set with over
100k article URLs we collected using an earlier
version of the search engine. Figure 1b shows our
crawling dynamics with 30-day rolling averages
starting in 2022. Since October 2022, when the
search engine stabilized after processing the initial
seed set, we have been crawling and processing
between 2,000 and 15,000 articles daily. The fluc-
tuations (variations and spikes) in the daily crawled
counts arise from several factors. Downtime in the
crawling system disrupts continuous data collec-

2



News Outlet Count
index.hr 1,254,026
24sata.hr 1,091,578
vecernji.hr 1,084,002
jutarnji.hr 986,694
net.hr 964,227
tportal.hr 855,193
dnevnik.hr 703,372
slobodnadalmacija.hr 536,334
glas-slavonije.hr 511,595
narod.hr 369,374
direktno.hr 350,978
rtl.hr 240,735
hrt.hr 231,193
dnevno.hr 211,433
hr.n1info.com 210,648
novilist.hr 187,648
telegram.hr 121,872
h-alter.org 68,499
bug.hr 33,806
priznajem.hr 31,607
plusportal.hr 31,395
geopolitika.news 26,715
teleskop.hr 21,682
tris.com.hr 15,386
netokracija.com 14,303
lupiga.com 13,100
hop.com.hr 11,390
tribun.hr 8,962
crol.hr 6,231
paraf.hr 6,144
forum.tm 3,981
liberal.hr 3,948
dokumentarac.hr 477

Table 1: Scraped article counts by news outlet (counts
for November 2024).

tion. Similarly, adding support for more outlets
alters the system’s crawling dynamics. Finally, ar-
ticles with incorrect dates or incorrectly extracted
dates can create artificial spikes in the data.

2.2 Semantic Search

The main feature of the TakeLab Retriever web
application is its ability to retrieve all articles that
match a user-provided query. The query can in-
clude semantic constraints (i.e., referring to the
semantic content of articles, such as named en-
tities or topics mentioned) and can be as simple
or as complex as needed. More complex queries

can be constructed using Boolean algebra opera-
tors by combining one or more of the following
constraints:

• Which news outlet is the article on (user can
select all news outlets or only specific ones)?

• Which named entity/entities are (or are not)
mentioned in the article?

• Which arbitrary phrase(s) are (or are not) men-
tioned in the article?

• Which topic(s) does (or does not) the article
belong to?

• Is the article automatically classified as a low-
quality article (an article that is likely not a
proper news story, including very short ar-
ticles, opinion pieces, astrology content, or
photo galleries)?

This functionality makes it seamless to lo-
cate and analyze text data published on Croatian
news outlets while delivering high-quality analy-
ses. Users can explore trends with just a few clicks
and keystrokes through the web application without
needing advanced technical expertise.

Figure 2 shows an example of a complex query
that runs on 33 news outlets, does not omit low-
quality articles from the result list, and uses the
Boolean operator AND between the following
search constraints: Nikola Tesla as an entity con-
straint, magnet as a phrase constraint, SCIENCE
AND TECHNOLOGY as a topic constraint. The
result is returned as a summary of article metadata
and statistics, shown to the user as a graph with
the number of articles in time and the table with
metadata (cf. Figure 3). The user can zoom in and
out on the article graph, and these actions update
the metadata table. Users can also export the article
metadata in either XLSX, CSV, or JSON format for
a closer look into the article URLs and metadata.

Figure 3 shows two separate search results (two
sets of constraints) on the same graph. Each con-
straint over the articles invokes a line on the graph,
which we call a Newsline. A set of constraints
with entity Nikola Tesla and topic SCIENCE AND
TECHNOLOGY invokes the first Newsline, which
we called Tesla. Similarly, the set of constraints
with entity Albert Einstein and topic SCIENCE
AND TECHNOLOGY invokes the second Newsline,
which we named Einstein. These constraint com-
binations are arbitrary and could have been more

3

https://www.index.hr
https://www.24sata.hr
https://www.vecernji.hr
https://www.jutarnji.hr
https://www.net.hr
https://www.tportal.hr
https://www.dnevnik.hr
https://www.slobodnadalmacija.hr
https://www.glas-slavonije.hr
https://www.narod.hr
https://www.direktno.hr
https://www.rtl.hr
https://www.hrt.hr
https://www.dnevno.hr
https://n1info.hr/
https://www.novilist.hr
https://www.telegram.hr
https://www.h-alter.org
https://www.bug.hr
https://www.priznajem.hr
https://www.plusportal.hr
https://www.geopolitika.news
https://www.teleskop.hr
https://www.tris.com.hr
https://www.netokracija.com
https://www.lupiga.com
https://www.hop.com.hr
https://www.tribun.hr
https://www.crol.hr
https://www.paraf.hr
https://www.forum.tm
https://www.liberal.hr
https://www.dokumentarac.hr


Ja
n 
20

00

Ja
n 
20

01

Ja
n 
20

02

Ja
n 
20

03

Ja
n 
20

04

Ja
n 
20

05

Ja
n 
20

06

Ja
n 
20

07

Ja
n 
20

08

Ja
n 
20

09

Ja
n 
20

10

Ja
n 
20

11

Ja
n 
20

12

Ja
n 
20

13

Ja
n 
20

14

Ja
n 
20

15

Ja
n 
20

16

Ja
n 
20

17

Ja
n 
20

18

Ja
n 
20

19

Ja
n 
20

20

Ja
n 
20

21

Ja
n 
20

22

Ja
n 
20

23

Ja
n 
20

24
0

200
400
600
800

1000
1200
1400
1600
1800
2000
2200
2400
2600
2800
3000
3200
3400

Published Date

D
ai

ly
 C

o
u
n
t

(a)

Ap
r 2

02
2

Ju
l 2

02
2

Oct
 2
02

2

Ja
n 
20

23

Ap
r 2

02
3

Ju
l 2

02
3

Oct
 2
02

3

Ja
n 
20

24

Ap
r 2

02
4

Ju
l 2

02
4

0

10k

20k

30k

40k

50k

60k

70k

80k

90k

100k

110k

120k

Crawled Date

D
ai

ly
 C

o
u
n
t

(b)

Figure 1: 30-day rolling averages of published and crawled articles over time: (a) Rolling average number of
published articles from news outlets within 12-month periods (starting with January 2000); (b) Rolling average
number of crawled articles from news outlets within 3-month periods (from last two years).

or less strict. Combining constraints arbitrarily and
defining multiple isolated constraints enables users
to unveil trends, patterns, and correlations in time
quickly and easily. For example, based on the ab-
solute number of article mentions (article count),
Nikola Tesla seems more popular than Albert Ein-
stein in Croatian news outlets.

3 Search Engine Design

The TakeLab Retriever search engine comprises
three parts: the scraper, the NLP modules, and
the web application, where the application and the
database communicate through the API. Figure 4
shows the architecture of the search engine. The de-
sign was guided by a number of key requirements:

• asynchronous I/O,

4



Figure 2: An example of a complex query in TakeLab Retriever web application with combinations of different
search constraints.

Figure 3: TakeLab Retriever web application search result for Nikola Tesla and Albert Einstein entities constraint in
combination with the topic SCIENCE AND TECHNOLOGY on 33 Croatian news outlets with no articles hidden
from the results.

5



• concurrent processing pipelines,

• flexible data flow,

• independent and trivial scaling of the parts of
the search engine,

• high robustness,

• high performance.

We adopted a microservice architecture to ad-
dress these requirements, where each service is run
separately in its container. Containers are defined,
created, started, and managed with Docker.4 We
opted for PostgreSQL5 as a message broker for ser-
vice communication. Specifically, we implemented
non-blocking priority queues using PostgreSQL
tables that allow arbitrary JSON messages. This
enables us to prioritize particular articles as they
move through the search engine (for example, af-
ter updating a specific NLP model, we want to
run inference on all articles in the database but
prioritize new ones). PostgreSQL could handle
both the read/write-intensive queue operations and
the read-heavy tasks associated with managing col-
lected data. Its ACID (atomicity, consistency, isola-
tion, and durability) properties further enhance the
search engine’s robustness by ensuring resilience to
data loss. To increase reliability, we implemented
an error queue for each component, where failed
tasks are sent for later review by a human or auto-
matically retried after a predefined delay. A notable
advantage of this microservice and queue-oriented
architecture is the ease of rerunning tasks. Simply
pushing the relevant data from the database back
into the appropriate queue allows us to effortlessly
reprocess tasks as needed. To keep track of the
search engine state, we implemented monitoring,
logging, and alerting solutions using a combination
of InfluxDB,6 Telegraf,7 and Grafana.8

3.1 The Scraper
The scraper is responsible for locating the articles,
downloading them, and storing the scraped article
content in the database. We opted for a custom
solution without relying on any scraping frame-
work, adopting outlet-agnostic data collection and
content extraction. We identified common patterns

4https://www.docker.com
5https://www.postgresql.org
6https://github.com/influxdata/influxdb
7https://github.com/influxdata/telegraf
8https://github.com/grafana/grafana

across different news outlets and standardized the
crawling process.

Our scraper operates as a closed-loop system
(cf. Figure 4) composed of three main compo-
nents: the scheduler, the downloader, and the ex-
tractor. Each news outlet is assigned its crawler,
which starts with a list of initial URLs (i.e., the
outlet’s homepages) and a set of regular expres-
sions (regexes). These regex patterns determine
which URLs should lead to articles, which should
be excluded, and which should be entirely ignored
to prevent unnecessary expansion down the URL
structure. During our initial news outlet analysis,
we discovered that each news outlet’s article web-
pages follow distinct URL patterns that can be ef-
fectively identified using a regex. We also unveiled
that most news outlets follow a similar structure:
homepages with links to articles, where the article
URLs follow predictable patterns. To maximize
user engagement, news outlets interlink articles,
creating a hidden web of article connections within
each news outlet page. By leveraging this structure,
we built a search engine that periodically visits
news outlet homepages, crawls article URLs, and
recursively discovers additional articles, ensuring
comprehensive content coverage.

3.1.1 The Scheduler
The scheduler component serves as the entry point
to our search engine. It receives URLs extracted
by the extractor, checks whether they have already
been visited, and, if not, assigns them to their re-
spective downloader queues (each crawler has its
own queue). If the URL has not yet been visited, it
is added to the visited URLs set, which is stored in
PostgreSQL as a single-column table.9 This allows
us to distinguish between articles within each news
outlet based on their URL structure.

The scheduler also includes a mechanism for de-
ferring sending URLs to the downloader queues.
This is implemented via a PostgreSQL table with
a column that specifies when the URL will be sent
to its respective downloader queue. This mecha-
nism is primarily used for recrawling news outlets’
homepages at fixed intervals. However, it could
be extended to recrawl articles at determined inter-
vals, which would be helpful for live articles that
are frequently updated, such as live election cov-
erage. Despite this potential, we have opted not
to scrape live articles periodically due to the rarity

9As of November 2024, we have over 80 million visited
URLs from the news outlets we continuously scrape.

6

https://www.docker.com
https://www.postgresql.org
https://github.com/influxdata/influxdb
https://github.com/influxdata/telegraf
https://github.com/grafana/grafana


List of outlets

Scheduler

Downloader

Extractor

Scraper

Database
API

Core module NER module NEL module
Low-quality

articles detector
module

Multi-label topic
classifier
module

...

NLP pipeline

Web application

Figure 4: The architecture of TakeLab Retriever.

of such content in regional news outlets. Further-
more, the overhead required to periodically crawl
all articles to detect updates in a small fraction is
resource-intensive. It is also impossible to differ-
entiate between regular, live, or test articles that
may be published unofficially somewhere inside
the news outlet link structure but not linked on the
news outlet’s homepage.

Additionally, the scheduler assigns a priority to
each URL, determining its place in the processing
pipeline. This priority propagates throughout the
search engine, allowing focus on more relevant
and recent content. For example, we prioritize
homepages and the articles directly linked from
them over archival articles buried deeper within the
news outlet’s link structure. This ensures near real-
time data collection for newly published articles.

3.1.2 The Downloader

The downloader component retrieves URLs from
the downloader queues, downloads the HTML con-
tent, and passes it to the extractor. It adheres to
each site’s robots.txt file, and if none is specified,
it ensures a respectful delay between consecutive
download requests for the same news outlet. Ro-
bust error handling and retry mechanisms are in
place to address the many edge cases that can arise
with network requests. Given the nature of scrap-
ing, the downloader spends significant time wait-
ing for and between network requests. To optimize
this, we run each crawler in its green thread (i.e.,
multiple threads scheduled by a user-space run-
time running in a single operating thread), utilizing
Python’s native AsyncIO library. Recently, some
news outlets started locking article content under
paywalls. We tackled this by purchasing the yearly
subscription for each such news outlet and open-

ing an AIOHTTP10 client session for scraping the
content of that news outlet through the downloader
component.

3.1.3 The Extractor
The extractor component processes the HTML re-
ceived from the downloader, extracting relevant
information and populating the columns in the Post-
greSQL article table. This table is the main table
in the database for storing all article data and meta-
data, such as the article body, title, and published
date, which are essential for subsequent process-
ing, data visualization, and presentation in the web
application. This table also hosts the results of
applying NLP models to the extracted title and
body. The extractor ensures the data is accurate and
clean, aiming to reduce redundancy through dedu-
plication against previously scraped articles. Once
the extraction is complete, the data is saved to the
database, and a request is sent to the NLP pipeline
queue for further analysis. A critical requirement
for the extractor is to clean and normalize the data,
ensuring that no other search engine component
has to manage this task. For extracting article con-
tent such as the body, title, and published date from
raw HTML, we use the Trafilatura library (Bar-
baresi, 2021), enforcing the precision mode. Our
experiments with extracted data from the articles
showed that the recall mode of Trafilatura extrac-
tion often pulls in excessive surrounding content,
such as advertisements or user comments. To en-
sure consistency, the extracted title and body are
normalized to UTF-8’s NFKC form. Except for
high-quality article data and metadata extraction,
the extractor’s responsibility is spreading down the
news outlet’s link structure since it extracts all the
URLs from the HTML, forwarding them to the

10https://docs.aiohttp.org/en/stable

7

https://docs.aiohttp.org/en/stable


scheduler (cf. Figure 4).
During the experimentation phase, we observed

that the same articles were being recrawled mul-
tiple times, even though we tracked visited URLs
through the scheduler component. This issue
stemmed from three causes: (1) different URLs
redirect to the same article (e.g., a URL with an
ID form and a slug form), (2) the URL for an arti-
cle changes due to its title changing, which in turn
changes its slug, and (3) URLs having unnecessary
(i.e., not required for article identification) query pa-
rameters (e.g., tracking information) and fragments.
To address this recrawling issue, we implemented
a deduplication algorithm to determine if an article
already exists in the database. The process begins
with a URL-based check to see if an article with the
same URL is stored. If this is the case, the existing
entry is updated (unless the newly extracted body
is too short compared to the old body).11 If the
URL is novel, we perform content-based checks.
Specifically, we compute the SimHash (Sadowski
and Levin, 2007) of the article. This SimHash
is based on trigrams of the concatenated alphanu-
meric characters from both the title and body of
the article. We then search the database for exact
matches to this SimHash (i.e., with a Hamming
distance of 0) and save the article as a new entry if
there is no exact SimHash match between the saved
articles from the news outlet and the article to be
saved.12 However, if a match exists, the entry in the
database is updated, and we keep the shorter URL.
This deduplication approach using exact SimHash
match serves two purposes: (1) since articles are
generally lengthy, SimHash performs well since
the impact of the small changes is minimal in com-
parison with the overall text size and does not alter
the SimHash, and (2) exact matching is extremely
fast in PostgreSQL when the SimHash column is in-
dexed, whereas searching for approximate matches
would require more complex structures such as BK-
trees, which would increase TakeLab Retriever’s
complexity and negatively affect performance. We
evaluated this approach (with a Hamming distance
of 0) on an automatically collected dataset of ap-
proximately 150,000 distinct13 articles and found
only two false positives.

11We replace the extraction for the already saved URL only
if the newly extracted body is bigger than 50% of the old saved
article body length to battle data loss during re-download or
re-extraction process.

12We do not compare SimHashes between news outlets.
13URL was used to determine uniqueness, which is a good

approximation when scraping over a short period.

3.2 The NLP Pipeline

Once the article passes through the scraper com-
ponent and is saved to the database, it is sent to
the NLP pipeline component for further process-
ing. The NLP pipeline component processes ar-
ticles sequentially using individual NLP modules.
The NLP pipeline component handles the entire
pipeline sequentially (i.e., on a single thread). To
speed up processing, we can run multiple pipeline
containers on available GPU units, which is partic-
ularly useful for tasks like reprocessing large parts
of the database with updated NLP models.14 The
NLP pipeline is the only component of TakeLab
Retriever that utilizes GPUs.

The NLP processing pipeline can be represented
as a directed acyclic graph where nodes represent
NLP modules (i.e., processors that fetch saved ar-
ticle data and apply NLP model(s)) and edges rep-
resent dependencies (i.e., a module may rely on
others to complete before it can start), as shown in
Figure 5. Each NLP module in a pipeline defines
a processing logic over article entries (whether the
models operate on title, body, or both and how) us-
ing one or more NLP models. This pipeline design
allows for flexible execution: we can update and
rerun specific modules (e.g., when a model inside
a module is updated) and only rerun those modules
that directly or indirectly depend on the updated
module, ensuring that all calculated features re-
main up to date while minimizing computational
costs. Having a reindexing support is very useful.
When a bug needs to be fixed, or new components
are added, there is no need to reprocess the whole
archive with all modules in the NLP pipeline. Pro-
cessing can instead begin from a specific point in
the pipeline and continue to the end. We chose a
sequential execution model over a single task-per-
module approach because the pipeline is not highly
parallelizable. The added complexity, particularly
the loss of atomicity and increased communication
overhead between tasks would outweigh the ben-
efits and potentially degrade performance. Each
module processes the article data and returns one
or more features, which are stored in a schemaless
JSON format in the database in the features column
of the article table. This JSON contains all features
calculated for a specific article, with each feature
comprising two fields: the data itself and a version
number. The version number increments whenever

14On a day-to-day basis, we run one NLP pipeline instance
on each physical GPU unit.

8



Core module
Sentencizer
Tokenizer

Lemmatizer
...

NER module NEL module
Low-quality

articles detector
module

Multi-label topic
classifier
module

Features for 
indexing stored in

JSON
...

NLP pipeline

Figure 5: The directed acyclic graph of the NLP pipeline in TakeLab Retriever used to semantically index articles
with phrases, entities, and topics. The arcs depict which module depends on the previous ones in the pipeline.

the model for that feature is updated, enabling us
to track which articles have been processed with
the latest models and which have not.

Our current NLP pipeline hosts the following
modules:

1. The core module performs core, lower-level,
linguistic processing tasks (e.g., sentence seg-
mentation, tokenization, and lemmatization);

2. The NER module extracts named entities from
the article;

3. The NEL module links entities with their
unique IDs in the knowledge database;

4. The low-quality articles detector module de-
cides if the scraped article is worth reading
and if it should be hidden by default based on
the quality of its content;

5. The multi-label topic classifier module as-
signs one or more topics to each article based
on the revised IPTC taxonomy.15

3.2.1 The Core Module
The core module is the prerequisite for any other
NLP module in the pipeline. This module performs
core NLP tasks using the Croatian16 spaCy model
hr_core_news_lg (Honnibal et al., 2020). We use
the statistical spaCy sentencizer model to split ar-
ticles into sentences.17 After performing sentence
segmentation, we apply the spaCy model for tok-
enization, POS tagging, morphological features ex-
traction, and dependency parsing. Furthermore, we
apply lemmatization with the MOLEX dictionary-
based lemmatizer (Šnajder et al., 2008) because,
unlike the spaCy lemmatizer, it is stable and pro-
duces the same lemmas for the same input text,

15https://iptc.org
16https://spacy.io/models/hr
17Our analyses showed that it works better than rule-based

sentence segmentation approaches.

which is better suited for search. We use MOLEX
lemmas for our phrase search feature in the web
application (every phrase entered for search is lem-
matized and matched with lemmatized entries in
the database). Finally, through the core module, we
instantiate a fastText18 Croatian model that other
NLP modules in the pipeline depend on. The re-
sults of the core module are saved in the database
as raw features.

3.2.2 The NER Module
The NER module is based on the BERTić encoder
model (Ljubešić and Lauc, 2021) fine-tuned for
NER.19 We extract named entities from the article
title and body and save each entity’s start position,
end position, and NER type (location, person, orga-
nization, miscellaneous) as raw features. Since we
tokenize the text with spaCy and apply the NER
model, which depends on BERTić tokenizer, we
align the tokens with the Python library tokeniza-
tions,20 and save NER extractions so that they cor-
respond to spaCy tokens. Therefore, the NER mod-
ule depends on the core module (cf. Figure 5). NER
extractions are not exposed to the end user. They
are a prerequisite for the NEL module, which is
exposed to the user via the web application.

3.2.3 The NEL Module
The NEL module is a custom model that matches
extracted named entity spans in text with their
unique IDs from a knowledge database of entities.
We opted for the Wikidata knowledge database due
to its rich and continuously updated entity collec-
tion.21 NEL depends on the successful execution
of both the core module and the NER module for
an article.

18https://fasttext.cc
19https://huggingface.co/classla/

bcms-bertic-ner
20https://github.com/explosion/tokenizations
21https://www.wikidata.org/wiki

9

https://iptc.org
https://spacy.io/models/hr
https://fasttext.cc
https://huggingface.co/classla/bcms-bertic-ner
https://huggingface.co/classla/bcms-bertic-ner
https://github.com/explosion/tokenizations
https://www.wikidata.org/wiki


The NEL module creation involved several steps.
First, we trained graph embeddings using PyTorch
BigGraph (Lerer et al., 2019) on the complete Wiki-
data graph. We then computed PageRank scores
(Page, 1999) for all items and classified them into
three categories—organizations, locations, and per-
sons—using “instance of” and “subclass of” rela-
tions as defined in (Shanaz and Ragel, 2019). We
filtered these items to include only those with Croa-
tian labels (including BCMS language variants, ex-
cluding Cyrillic script). The filtered items, their
embeddings, PageRank scores, and all Wikidata
labels and aliases are stored in our database.

For entity linking, the system first retrieves can-
didate entities for each NER-extracted mention by
matching lemmatized mentions against stored la-
bels and aliases. The initial solution assigns each
mention to the candidate with the highest PageRank
score. This solution is then iteratively refined (max-
imum five iterations, though convergence typically
occurs within two to three steps) by computing sim-
ilarity scores between candidates and current best
solutions for all other mentions. For each mention,
we calculate the dot product between its candidates’
embeddings and the embeddings of the current best
solution for other mentions, selecting the candidate
with the highest aggregate similarity score as the
new solution.

This approach works well for well-known en-
tities but sometimes fails for less-known entities.
Nevertheless, it enables users to search for entities
through the web application and to verify using
Wikidata ID that the entity they are searching for is
the right one.22 The alternative approach we plan
to integrate into the system is a matching model,
which was trained to embed named entities and
predict their ID in the knowledge database directly.

3.2.4 The Low-Quality Articles Detector
Module

We noticed that a significant portion of the articles
we collected with the scraper contained a low num-
ber of tokens or were not pieces of text a reader
would consider a genuine article (opinion pieces,
astrology content, photo galleries, etc.). However,
these low-quality articles could not be spotted algo-
rithmically since their URL schema was identical
to high-quality articles. Therefore, we decided to

22For example, if the user searches for named entity Tesla,
the user can be sure based on the ID 9036 (https://www.
wikidata.org/wiki/Q9036) that the search is meant to re-
trieve the article mentioning the famous inventor and not a
company, which has a different ID.

build a statistical classifier to predict if the arti-
cles are of such low quality that we should hide
them from the search results to enhance user expe-
rience on our semantic search engine. Our team
annotated a sample of a couple hundred articles
by declaring articles low-quality if the article was
not worth reading. We trained a support vector ma-
chine (SVM) binary classifier on the annotated data
that classifies the articles relying on the fastText
embedding (Bojanowski et al., 2017) of their con-
catenated title and body. We leverage the Croatian
fastText embedding model for this purpose. Arti-
cles are ultimately assigned low-quality or not-low
quality labels. This module also relies on success-
fully executing the core module in the pipeline. If
the article (title + body) is shorter than 50 tokens,
it is automatically considered of low-quality and
hidden from the search results. If the number of to-
kens exceeds 50, it is hidden only if the low-quality
articles detector module labels it as low-quality. In
the web application, users can either include or re-
move low-quality articles from the presentation of
the results. Our database hosts 11.83% articles hid-
den by default in the web application, making up a
significant portion of the total number of crawled
news articles.

3.2.5 The Multi-Label Topic Classifier
Module

To assign topics to articles, we developed a multi-
label topic classifier module, which assigns one
or more predefined topics to the article based on
the title and body of the article. For this purpose,
our team annotated a sample of almost a thousand
articles with 17 topics based on the revised IPTC
taxonomy. Table 2 provides a breakdown of the
articles in our database by their assigned topics.23

On top of annotated data, we trained the Omikuji
classifier,24 an efficient implementation of parti-
tioned label trees (Prabhu et al., 2018), which as-
signs one or more topics to each article and works
well even for rare multi-label combinations in the
training data. Each article is embedded with the
fastText model for Croatian to enable high-quality
classification. The multi-label topic classifier mod-
ule also depends on the core module. This module
allows users to search for articles based on the as-
signed predefined topics via the web application.

23Note that each article can have several topics assigned.
24https://github.com/tomtung/omikuji

10

https://www.wikidata.org/wiki/Q9036
https://www.wikidata.org/wiki/Q9036
https://github.com/tomtung/omikuji


IPTC topic Count
SPORT 1,972,713
HOBBY AND PERSONAL INTEREST 1,964,704
POLITICS 1,367,163
CRIME, LAW AND JUSTICE 971,341
ECONOMY, BUSINESS AND FINANCE 911,022
DISASTER, ACCIDENT AND EMERGENCY INCIDENT 669,387
HEALTH 634,151
ARTS, CULTURE, ENTERTAINMENT AND MEDIA 467,566
CONFLICTS, WAR AND PEACE 360,649
SCIENCE AND TECHNOLOGY 332,232
ENVIRONMENT 217,948
EDUCATION 153,699
WEATHER 148,494
RELIGION 116,417
LIFESTYLE AND LEISURE 96,762
LABOUR 88,905
SOCIETY 14,053

Table 2: List of revised IPTC topics ordered by counts
of over ten million scraped news articles (counts for
November 2024).

3.3 API and Web Application
We do not provide direct access to our data or stored
features. Instead, we offer specific querying end-
points through a RESTful API tailored to our target
audience. Since we do not expect our users to
have technical expertise, they will primarily inter-
act with the semantic search engine via a web appli-
cation frontend, which handles all server commu-
nication and data display. This approach improves
the user experience. Each frontend query is trans-
lated through backend logic into an SQL query,
executed over the database by sending a request to
a specific API endpoint. Issuing a query like the
one shown in Figure 3 is fast because each search
constraint (entities, phrases, or topics) has a ded-
icated column in the article table of the database,
with either a B-tree or GIN index applied to opti-
mize query performance. We also perform caching
for a faster user experience and use materialized
view, speeding up entity count over articles. The
web application is written in Vue.js25 and Tailwind
CSS.26 While we plan to release API endpoints for
more advanced users, this feature is scheduled for
one of the future updates of TakeLab Retriever.

4 Conclusion

TakeLab Retriever search engine offers a compre-
hensive and tailored solution for automated scrap-
ing, retrieval, semantic analysis, and presentation
of news articles from Croatian online news out-
lets. By integrating state-of-the-art NLP models
and adopting a robust microservice architecture,

25https://vuejs.org
26https://tailwindcss.com/

TakeLab Retriever overcomes the limitations of
general-purpose search engines and streamlines the
research process for scholars in the social sciences
and beyond. The ability of TakeLab Retriever to
automatically unveil and semantically index over
ten million articles, combined with its web appli-
cation, enables fast article retrieval and improves
the quality and precision of research. With its on-
going updates and daily indexing of new articles,
TakeLab Retriever sets a new standard for media re-
search in Croatia, contributing to a more profound
understanding of trends, patterns, and correlations
in online news content.

For future work, we intend to improve the web
application experience and introduce a concept of
the user where user-specific queries could be saved
into a user account, trending queries could be de-
tected automatically, and queries could be shared
between users to ensure result reproducibility. Fur-
thermore, we plan to extend the semantic search
engine with the new NLP modules, including the
keyphrase extraction module, the semantic similar-
ity module, and a module for sentiment analysis in
article titles. Finally, we wish to extend the scraper
to cover more Croatian news outlets as well as re-
gional news outlets.

Acknowledgments

We extend our heartfelt thanks to everyone involved
in creating and developing the TakeLab Retriever
search engine. We are particularly grateful to Ivan
Krišto, whose software engineering expertise and
mentorship were instrumental in achieving search
engine stability. The engine has evolved to its cur-
rent state through the valuable contributions of nu-
merous interns, master’s and doctoral students, and
social science researchers.

References

Adrien Barbaresi. 2021. Trafilatura: A web scraping
library and command-line tool for text discovery and
extraction. In Proceedings of the 59th Annual Meet-
ing of the Association for Computational Linguistics
and the 11th International Joint Conference on Nat-
ural Language Processing: System Demonstrations,
pages 122–131, Online. Association for Computa-
tional Linguistics.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and
Tomas Mikolov. 2017. Enriching word vectors with
subword information. Transactions of the Associa-
tion for Computational Linguistics, 5:135–146.

11

https://vuejs.org
https://tailwindcss.com/
https://doi.org/10.18653/v1/2021.acl-demo.15
https://doi.org/10.18653/v1/2021.acl-demo.15
https://doi.org/10.18653/v1/2021.acl-demo.15
https://doi.org/10.1162/tacl_a_00051
https://doi.org/10.1162/tacl_a_00051


Matthew Honnibal, Ines Montani, Sofie Van Lan-
deghem, and Adriane Boyd. 2020. spaCy: Industrial-
strength natural language processing in Python.

Adam Lerer, Ledell Wu, Jiajun Shen, Timothee
Lacroix, Luca Wehrstedt, Abhijit Bose, and Alex
Peysakhovich. 2019. Pytorch-biggraph: A large
scale graph embedding system. Proceedings of Ma-
chine Learning and Systems, 1:120–131.

Dirk Lewandowski. 2015. Evaluating the retrieval effec-
tiveness of web search engines using a representative
query sample. Journal of the Association for Infor-
mation Science and Technology, 66(9):1763–1775.

Nikola Ljubešić and Davor Lauc. 2021. BERTić - the
transformer language model for Bosnian, Croatian,
Montenegrin and Serbian. In Proceedings of the 8th
Workshop on Balto-Slavic Natural Language Pro-
cessing, pages 37–42, Kiyv, Ukraine. Association for
Computational Linguistics.

Lawrence Page. 1999. The PageRank citation ranking:
Bringing order to the web. Technical report, Techni-
cal Report.

Yashoteja Prabhu, Anil Kag, Shrutendra Harsola, Rahul
Agrawal, and Manik Varma. 2018. Parabel: Par-
titioned label trees for extreme classification with
application to dynamic search advertising. In Pro-
ceedings of the 2018 World Wide Web Conference,
pages 993–1002.

Caitlin Sadowski and Greg Levin. 2007. SimHash:
Hash-based similarity detection.

Abdul Lathif Fathima Shanaz and Roshan G Ragel.
2019. Named entity extraction of wikidata items. In
2019 14th Conference on Industrial and Information
Systems (ICIIS), pages 40–45. IEEE.

Jan Šnajder, B Dalbelo Bašić, and Marko Tadić. 2008.
Automatic acquisition of inflectional lexica for mor-
phological normalisation. Information Processing &
Management, 44(5):1720–1731.

12

https://doi.org/10.5281/zenodo.1212303
https://doi.org/10.5281/zenodo.1212303
https://aclanthology.org/2021.bsnlp-1.5
https://aclanthology.org/2021.bsnlp-1.5
https://aclanthology.org/2021.bsnlp-1.5

	Introduction
	Using the Search Engine
	Article Collection
	Semantic Search

	Search Engine Design
	The Scraper
	The Scheduler
	The Downloader
	The Extractor

	The NLP Pipeline
	The Core Module
	The NER Module
	The NEL Module
	The Low-Quality Articles Detector Module
	The Multi-Label Topic Classifier Module

	API and Web Application

	Conclusion

