
Under review as a conference paper at ICLR 2025

DISENTANGLING LATENT SHIFTS OF IN-CONTEXT
LEARNING THROUGH SELF-TRAINING

Josip Jukić Jan Šnajder
TakeLab, Faculty of Electrical Engineering and Computing, University of Zagreb, Croatia
{josip.jukic, jan.snajder}@fer.hr

ABSTRACT

In-context learning (ICL) has become essential in natural language processing,
particularly with autoregressive large language models capable of learning from
demonstrations provided within the prompt. However, ICL faces challenges with
stability and long contexts, especially as the number of demonstrations grows,
leading to poor generalization and inefficient inference. To address these issues,
we introduce STICL (Self-Training ICL), an approach that disentangles the latent
shifts of demonstrations from the latent shift of the query through self-training.
STICL employs a teacher model to generate pseudo-labels and trains a student
model using these labels, encoded in an adapter module. The student model ex-
hibits weak-to-strong generalization, progressively refining its predictions over
time. Our empirical results show that STICL improves generalization and stabil-
ity, consistently outperforming traditional ICL methods and other disentangling
strategies across both in-domain and out-of-domain data.

1 INTRODUCTION

In-context learning (ICL) (Brown et al., 2020) has emerged as a significant machine learning
paradigm, particularly in natural language processing (NLP) applications that utilize large language
models (LLMs). Unlike traditional supervised machine learning methods that rely on training over
multiple epochs with large datasets, ICL leverages the ability of autoregressive LLMs to learn from
context, with demonstrations and the query combined in a single prompt. This enables models to
rapidly adjust to new tasks or varying input patterns without the need for additional fine-tuning.
Moreover, ICL proves effective in low-resource setups by utilizing zero-shot and few-shot learning
to perform tasks with minimal or no supervision (Dong et al., 2024a).

Despite its strengths, ICL faces several critical challenges. One of the key issues is stability –
autoregressive LLMs based on the transformer architecture (Vaswani et al., 2017) can be highly
sensitive to variations in the input context, such as the selection and ordering of demonstrations (Li
et al., 2024; Lu et al., 2021; Dong et al., 2024a). This instability can result in poor generalization,
making the models less reliable in real-world applications. Compounding this issue, ICL often in-
volves long contexts because it requires incorporating multiple demonstrations alongside the query
within a single input prompt. As more demonstrations are added, the input lengthens, and LLMs of-
ten struggle to handle extended contexts effectively. This problem can be traced to inherent primacy
and recency biases, which lead models to overemphasize information positioned at the beginning
or end of the context (Liu et al., 2024). Moreover, the inherent limitations of the context window
size impose computational constraints, presenting a practical bottleneck (Dong et al., 2024b). Even
with expanded context windows in newer models, limited context remains a significant challenge for
ICL. LLMs struggle to fully leverage contexts when incorporating multiple demonstrations, often
exceeding practical input lengths.

The aforementioned stability issues in ICL stem from the joint processing of demonstrations and the
query. Since ICL can be viewed as introducing shifts in the model’s internal representations – where
knowledge from demonstrations is superimposed onto the latent features induced by the query –
a promising solution is to disentangle these latent shifts, separating those induced by demonstra-
tions from those of the query. By separating these shifts, ICL can process queries independently
of demonstrations, reducing computational overhead and improving stability. Disentangling has

1

ar
X

iv
:2

41
0.

01
50

8v
1

 [
cs

.C
L

]
 2

 O
ct

 2
02

4

Under review as a conference paper at ICLR 2025

Teacher LLM

Student LLM

Base LLM Adapter

Demonstrations:

Xd = [x1, x2, . . . , xn]

Query: xq

;⃝ yt

ys

ℓCE(yt, ys)

Figure 1: Illustration of STICL. The teacher processes a concatenation (denoted by ;⃝) of demonstra-
tions Xd, consisting of n demonstrations [x1,x2, . . . ,xn], and the query xq . The student, using only
the query, fine-tunes its adapter weights to produce outputs ys aligned with the teacher’s pseudo-
labels yt by minimizing the cross-entropy loss ℓCE. After fine-tuning, the student can process only
queries while still using the knowledge from demonstrations encoded in the adapter.

been explored from various perspectives: Liu et al. (2023) and Zhang et al. (2024) have focused on
improving ICL’s stability and scalability, while Dai et al. (2023) and Todd et al. (2024) leveraged
disentangling to gain theoretical insights. Separating the latent shifts makes it possible to persis-
tently store the context knowledge provided by demonstrations, eliminating the need to reprocess
demonstrations with every query. This results in significantly shorter prompts, as only the queries
remain, which can mitigate the problem of long context and improve the efficiency of inference. The
latent shift induced by demonstrations can then be applied trivially, for example, by adding it to the
latent features induced by the query. While disentangling the latent shifts of ICL has shown potential
in improving ICL and advancing theoretical understanding, current methods rely on approximations,
primarily by manipulating attention heads or hidden states. A more direct and principled approach
to disentangling these shifts remains an open and compelling area for further investigation.

In this work, we propose to disentangle the latent shift of demonstrations from that of the query
by explicitly focusing on the model’s final outputs through the use of self-training (Amini et al.,
2022). Self-training involves training a model using pseudo-labels generated by a previously learned
model and has proven highly effective in leveraging unlabeled data for neural network training (Wei
et al., 2021). We employ self-training in a simple teacher-student framework to encode the latent
shift of demonstrations into a small set of additional parameters housed within an adapter module
(Houlsby et al., 2019). Our method, STICL (Self-Training ICL), illustrated in Figure 1, employs a
teacher LLM to generate pseudo-labels by processing both the demonstrations and the query without
requiring extra labeled data. These pseudo-labels are then used to train a student LLM. The student
model is trained to match the output provided by the teacher, taking only the query as the input. By
leveraging unlabeled data through self-training, the student can correct the pseudo-labels provided
by the teacher, exhibiting weak-to-strong generalization (Lang et al., 2024). The method encodes the
information from the demonstrations into the parameters and can seamlessly apply the latent shift
just by activating the adapter module. Furthermore, due to the flexibility of adapters, a large set of
demonstrations can be chunked into more manageable subsets, with each subset encoded in its own
adapter module, and the modules can be easily merged. We evaluate STICL using autoregressive
LLMs such as Llama 3 (8B) (Dubey et al., 2024) and Phi 3 (mini 4k) (Abdin et al., 2024) on the
GLUE (Wang et al., 2018) and MMLU (Hendrycks et al., 2021) benchmarks, comparing it to pattern-
based fine-tuning (Schick & Schütze, 2021) and few-shot ICL. On both in-domain (ID) and out-
of-domain (OOD) data, STICL consistently outperforms these baselines and other disentanglement
methods that leverage attention heads or hidden states, thus offering a reliable alternative without
needing extra labeled data.

Our contribution is two-fold: (1) We introduce STICL, a self-training ICL method that enhances
efficiency and addresses stability and long-context challenges of ICL by disentangling the latent
shifts between demonstrations and queries using one or several adapter modules; (2) We empir-
ically demonstrate that STICL significantly improves both stability and generalization on ID and
OOD, outperforming traditional ICL methods and other disentangling methods, while maintaining
parameter efficiency. These findings suggest that even simple self-training setups, when properly
designed, can offer substantial gains in ICL performance, paving the way for more efficient and
scalable alternatives to current approaches.1

1The code is included in the supplementary material and will be made available upon publication.

2

Under review as a conference paper at ICLR 2025

2 METHOD

2.1 DISENTANGLING LATENT SHIFTS

Disentangling in-context knowledge from the query can aid in improving the efficiency and stability
of ICL. Current approaches rely on manipulating the outputs of attention heads or hidden states.
The motivation behind disentangling lies in previous research (Aizerman, 1964; Irie et al., 2022),
demonstrating that linear layers optimized through gradient descent have a dual form of linear at-
tention. To illustrate, consider a neural network’s linear layer, where W0,∆W ∈ Rm×n denote the
initial weight matrix and its subsequent updates by backpropagation, respectively. With x ∈ Rm as
the input representation, a linear transformation f : Rm → Rn can be expressed as:

f(x) = (W0 +∆W)x. (1)

During backpropagation, ∆W is computed by accumulating the outer products (denoted by ⊗) of
N training examples {x1,x2, . . . ,xN}, where xi ∈ Rm, and the error signals {e1, e2, . . . , eN},
where ei ∈ Rn, obtained from the gradients of the loss function:

∆W =

N∑
i=1

ei ⊗ xi. (2)

Irie et al. (2022) show that the update part of linear layers optimized by gradient descent can be
expressed as unnormalized linear dot-product attention:

f(x) = (W0 +∆W)x = W0x+

N∑
i=1

(ei ⊗ xi)x = W0x+

N∑
i=1

ei(x
T
i x)︸ ︷︷ ︸

linear attention

. (3)

In the context of the attention mechanism, this shows that the latent shift ∆Wx corresponds directly
to the application of linear attention, with error signals ei as values, training examples xi as keys,
and the current input x as the attention query.

The concept of disentangling the latent shifts described in (3) can be extended to ICL, albeit only
under the approximation of linear attention. Let WV , WK , and WQ denote the weight matrices
for values, keys, and queries, respectively. Let x(t)

q represent the current query token’s embedding
at step t, and q(t) = WQx

(t)
q is the corresponding attention query vector. The matrix Xq =

[x
(1)
q ,x

(2)
q , . . . ,x

(t−1)
q] contains all previous query token representations up to t − 1, and Xd is

the matrix of demonstration token representations. The concatenation [Xd;Xq] along the sequence
dimension is used to compute the attention output at step t, expressed as:

fAH(x
(t)
q) = WV [Xd;Xq] softmax

(
(WK [Xd;Xq])

⊤
q(t)

√
d

)
, (4)

where d is the scaling factor (i.e., the dimensionality of the key vectors). By approximating the
attention mechanism with linear attention, it becomes possible to disentangle the latent shift of the
zero-shot output of an attention head induced by the query from the latent shift induced by the
demonstrations (Dai et al., 2023):

fAH(x
(t)
q) ≈ WV [Xd;Xq] (WK [Xd;Xq])

⊤
q(t)

= WV Xq (WKXq)
⊤︸ ︷︷ ︸

WZS

q(t) +WV Xd (WKXd)
⊤︸ ︷︷ ︸

∆WICL

q(t)

= (WZS +∆WICL)q
(t).

(5)

This approximation disentangles the latent shift induced by the demonstrations Xd from that induced
by the query x

(t)
q (cf. Appendix A for detailed derivation of (5)). The contribution from ICL is

captured as a virtual weight update ∆WICL, corresponding to virtual gradients, often referred to as
“meta-gradients” in the literature. The zero-shot latent shift of the query, corresponding to WZSq

(t),
reflects the output without demonstrations, providing the initial state. Analogous to ∆Wx in (3),

3

Under review as a conference paper at ICLR 2025

the latent shift ∆WICLq
(t) reflects the contribution of ICL. Finally, by substituting hZS = WZSq

(t)

and ∆hICL = ∆WICLq
(t), we can rewrite the output of an attention head as:

fAH(x
(t)
q) ≈ hZS +∆hICL. (6)

Although transformer-based LLMs use non-linear attention in practice, many approaches (Dai et al.,
2023; Zhang et al., 2024; Todd et al., 2024) rely on the theoretical underpinnings of linear attention.
These methods manipulate attention heads or hidden states to disentangle latent shifts despite the
inherent non-linearity of the models. Furthermore, this simplification overlooks other crucial com-
ponents of the transformer architecture, such as the feed-forward layers, activation functions, and
residual connections. While approaches based on linear attention have proven effective, they leave
room for further improvements in capturing and disentangling the full complexity of how transform-
ers process data. In this work, we explore how virtual weight updates can be obtained more directly
while preserving the key components of the transformer architecture.

2.2 SELF-TRAINING ICL

Building on the concept of disentangling latent shifts in transformer architectures, we introduce
STICL (Self-Training ICL), an approach that offers a simple yet highly efficient way to internalize
ICL knowledge into a model’s parameters. Rather than relying solely on manipulating attention
heads, as is common in current methods, STICL aims to capture the full complexity of the trans-
former’s components – considering the final output, which depends on all layers, including attention
heads, feed-forward layers, and residual connections. By aligning more directly with the actual
latent shifts induced by demonstrations, STICL ensures that the model uses the entirety of its archi-
tecture to first embed and later apply in-context knowledge.

At the core of STICL is a simple teacher-student framework: the teacher model, fteacher, processes
both demonstrations and the query together to generate pseudo-labels without needing additional
labeled data. The student model, fstudent, shares the same architecture as the teacher but includes
adapter parameters. Unlike the teacher, the student processes only the query, using the adapter to
internalize the knowledge from the demonstrations, as illustrated in Figure 1. Let xq denote the
query input and Xd the matrix of demonstration tokens, where each row corresponds to a single
demonstration.2 The empirical loss, using the cross-entropy loss ℓCE, is defined as:∑

xq∈Dunlab

ℓCE (fteacher ([X
∗
d;xq]) , fstudent (xq)) , (7)

where Dunlab is an unlabeled dataset and X∗
d is a flattened version of Xd. This approach is grounded

in self-training (Amini et al., 2022), leveraging the teacher’s pseudo-labels to fine-tune the student’s
adapter.

STICL fundamentally differs from existing approaches, which rely on manipulating attention heads
or hidden states at query time. Instead, STICL progressively embeds the knowledge from demon-
strations into the adapter parameters, denoted WICL. The base LLM parameters, WZS, capture the
zero-shot component, while the total model parameters may be represented as WZS ⊕WICL, where
⊕ denotes the composition of base and adapter parameters.3 This setup captures the latent shift
introduced by the demonstrations through WICL, extending the disentangling process outlined by
(5) across the model’s entire architecture. The teacher processes the full input sequence [X∗

d;xq],
while the student processes only the query, applying WICL to integrate demonstration knowledge
without explicitly processing the demonstrations. Analogous to (6), the latent shift induced by
demonstrations can be recovered by decomposing outputs into zero-shot and ICL components. Let
hLLM(xq | W) represent the final latent states of an LLM with parameters W when processing the
input xq . The following decomposition holds:

hLLM(xq | WZS ⊕WICL) = hLLM(xq | WZS) + ∆hICL, (8)

where ∆hICL encapsulates the latent shift attributable to the demonstrations. STICL encodes the la-
tent shift implicitly within the adapter parameters WICL, which is central to our approach. However,
if necessary, the latent shift can also be explicitly calculated owing to the decomposition in (8).

2Since the embedding transformation is implied within the LLM, the query xq is a vector of token IDs, and
Xd contains token IDs of demonstrations.

3Notably, the number of adapter parameters is significantly smaller compared to the base model parameters.

4

Under review as a conference paper at ICLR 2025

The stabilizing effect of STICL extends beyond just handling demonstrations. By iterating over
multiple epochs, STICL leverages the same LLM instance for both the teacher and student roles,
transitioning smoothly between them by activating or deactivating the adapter. Demonstrations can
be shuffled across epochs to reduce sensitivity to their order, further stabilizing the ICL process. But
the true power of STICL emerges from its parametric nature, which aligns with the optics of weak-
to-strong generalization (Lang et al., 2024). The adapter parameters allow the model to internalize
shifts and generalize effectively across both ID and OOD data, as demonstrated empirically in our
experiments (cf. Section 3).

From the perspective of weak-to-strong generalization, the student model is not just expected to
match the teacher – it is designed to outperform it. STICL facilitates this by leveraging pseudo-
label correction, where incorrect labels are refined using high-confidence neighboring examples,
and coverage expansion, enabling the model to generalize beyond regions initially covered by the
teacher and even to near-OOD data (Section 3). STICL not only stabilizes ICL but also capitalizes
on the parametric regime, where latent shifts can be efficiently encoded, enabling the model to
establish implicit local-to-global consistency across the data distribution through extrapolation (Wei
et al., 2021).

3 EXPERIMENTS

Models. We utilize a set of decoder-only autoregressive LLMs in our experiments. Specifically,
we employ Hugging Face implementations (Wolf et al., 2020) of Llama 3 (8B) (Dubey et al., 2024)
and Phi 3 (mini 4k) (Abdin et al., 2024) as our primary models, with additional comparison results
for Llama 2 (7B) (Touvron et al., 2023). Detailed information about the models is provided in Table
9 in the Appendix.

Evaluation. We evaluate the models on the following benchmarks:

• GLUE (Wang et al., 2018): A standard benchmark for evaluating natural language un-
derstanding. We select the following datasets: four binary classification tasks for single
sequences (COLA, SST, RTE), three binary classification tasks for sequence pairs (MRPC,
QQP, QNLI), and one multi-class classification task for sequence pairs (MNLI). We follow
the standard practice of evaluating models on the development sets. When evaluating gen-
eralization performance, we follow the standard practice and use Matthew’s correlation for
COLA, F1 for MRPC and QQP, and accuracy for the remaining datasets;

• MMLU (Hendrycks et al., 2021): We evaluate the accuracy of multiple choice question
answering on the MMLU benchmark, selecting two datasets with a sufficient number of
instances for robust evaluation: “elementary math” (MATH), assessing basic mathematical
reasoning skills, and “miscellaneous” (MISC), which covers diverse topics.

In our evaluation, we compute the first-token probability of the task verbalizers. We design the
prompt template to guide the model toward generating the answer within the first token and limit the
predictions to a subset of verbalizers (cf. Appendix E for details on prompt templates).

Baselines and Methods. We evaluate STICL by comparing it against three baselines and two ICL
disentanglement methods:

• Zero-Shot (0-shot): Predictions made without any demonstrations;

• Standard ICL (n-shot): Utilizes n demonstrations as context during inference;

• Pattern-Based Fine-Tuning (PBFT) (Schick & Schütze, 2021): Fine-tunes the model
using patterns learned from data, framed as a language modeling task. In our experiments,
we fine-tune an adapter module instead of the whole LLM;

• In-Context Vectors (ICV) (Liu et al., 2023): A forward pass is used on demonstration
examples to create in-context vectors from the hidden states of the LLM;

• Batch-ICL (Zhang et al., 2024): Utilizes multiple separate one-shot forward computations
and aggregates the resulting meta-gradients based on the attention head outputs.

5

Under review as a conference paper at ICLR 2025

Table 1: ID generalization scores for the 16-shot setup and |Dunlab| = 100. The standard deviations
of 10 runs are shown as subscripts. The highest scores and smallest standard deviations are high-
lighted in bold, while the second-best scores are underlined.

GLUE MMLU
Model Method RTE SST QNLI MNLI COLA MRPC QQP MATH MISC

L
la

m
a

3
(8

B
)

0-shot 62.3 79.1 64.3 59.9 44.6 63.6 61.1 31.5 62.5
n-shot 75.16.5 93.52.0 77.05.5 68.03.0 58.54.0 74.02.5 70.03.0 43.53.5 84.04.0
PBFT 73.23.8 93.81.5 77.86.0 67.43.5 56.53.0 72.02.0 68.02.5 44.03.8 83.54.5
ICV 72.92.7 92.21.8 74.56.3 67.04.2 57.33.5 73.42.3 69.12.8 41.54.3 67.04.2
Batch-ICL 77.84.7 94.12.2 78.06.0 70.93.5 59.83.7 75.22.2 72.52.7 36.24.0 81.02.5
STICL-F 83.40.3 95.10.6 80.31.4 72.12.5 63.71.5 76.21.8 71.91.9 46.02.3 86.02.3
STICL-S 86.00.6 96.11.2 81.42.2 73.12.0 64.32.2 77.71.5 73.11.8 49.52.0 88.02.2
STICL-R 86.53.0 95.50.8 79.04.3 73.53.0 62.52.8 76.51.9 72.02.2 44.02.7 85.53.3

Ph
i3

(m
in

i4
k)

0-shot 60.6 78.3 61.1 58.1 43.7 63.1 57.8 29.5 52.0
n-shot 72.15.2 90.62.1 75.63.2 65.33.1 55.54.1 71.12.6 66.23.7 37.53.6 75.54.1
PBFT 70.64.3 90.91.9 73.63.4 63.63.6 53.63.1 69.62.3 64.62.6 36.54.1 73.54.6
ICV 71.53.1 89.12.1 74.33.2 64.14.1 54.13.6 70.82.4 65.42.9 36.04.6 74.04.3
Batch-ICL 75.34.2 91.22.6 76.63.1 67.13.6 56.14.1 72.62.6 67.32.8 38.03.9 76.04.1
STICL-F 80.41.2 92.11.6 78.21.3 69.72.4 59.52.5 73.52.1 68.62.2 40.53.2 77.53.6
STICL-S 82.41.1 93.21.6 79.21.4 70.41.1 60.72.3 74.11.4 69.61.9 41.52.3 78.03.3
STICL-R 79.01.9 92.62.0 79.62.9 68.63.9 58.62.9 73.62.0 68.12.3 39.53.6 77.03.7

In the experiments, we use n ∈ {4, 8, 16, 32} instances for demonstrations and compare methods
using a fixed number of demonstrations. Unless stated otherwise, we run each experiment 10 times
with different seeds, which select different demonstrations in each run. In addition to the general-
ization scores, we report the standard deviation of the runs as an indicator of method stability. We
evaluate performance on the GLUE development sets, while for the MMLU datasets, we sample 200
instances for evaluation.

STICL variants. We employ three variants of STICL, which differ in the variability of demonstra-
tions they use, either in terms of selection or ordering:

• STICL-Fixed (STICL-F): Uses a fixed set of demonstrations throughout training;

• STICL-Shuffle (STICL-S): Shuffles the order of demonstrations at the start of each epoch;

• STICL-Resample (STICL-R): Randomly resamples demonstrations before each epoch.4

We utilize LoRA (Low-Rank Adaptation) (Hu et al., 2022) for the adapter modules (for both PBFT
and STICL), corresponding to 0.1–0.3% of the total parameter count, depending on the model (cf. Ta-
ble 9 in the Appendix for adapter sizes per model). For each task, we generate pseudo-labels using
the teacher model on unlabeled data. Specifically, we use 100 unlabeled instances (Dunlab in (7))
for both the GLUE and MMLU benchmarks. Additionally, for GLUE datasets, we experiment with
200 and 500 instances to assess the impact of the amount of unlabeled data on generalization and
stability. We experiment only with 100 unlabeled instances for MMLU datasets due to their limited
size. In all of the experiments, we fine-tune the adapter for 10 epochs. Further experimental details
are provided in Appendix D.

3.1 GENERALIZATION AND STABILITY

We first evaluate the generalization and stability of STICL on ID data. Table 1 reports the 16-shot
ID generalization scores along with standard deviations. Across all datasets and models, STICL-S
consistently achieves the best generalization scores, outperforming standard ICL, PBFT, and the
disentanglement methods ICV and Batch-ICL (cf. Table 5 in the Appendix for results with Llama
2). Compared to standard ICL, STICL-S shows absolute improvements ranging from 2.6% to 11.9%
for Llama 3 and 2.5% to 10.3% for Phi 3, where the differences in scores are statically significant

4Although STICL-R uses the same number of demonstrations during inference as the other approaches, it
requires access to a larger pool of labeled data since it draws new demonstrations in each epoch.

6

Under review as a conference paper at ICLR 2025

across all datasets.5 Similar patterns hold for n ∈ {4, 8, 32}, where STICL-S also surpasses standard
ICL (cf. Table 6 in the Appendix for other n-shot setups). Additionally, when a larger set Dunlab is
used, there is a marginal improvement in scores, while stability improves even further (cf. Table 7
in the Appendix). Notably, the improvements in generalization with STICL-S, compared to standard
ICL – the teacher model in STICL– provide strong evidence that the student model is exhibiting
weak-to-strong generalization; we provide a more detailed analysis of this phenomenon in Section
4. While the STICL-F and STICL-R variants also show similar generalization scores as STICL-S,
they generally exhibit higher variance compared to STICL-S, making STICL-S the preferred choice
due to its higher stability with respect to demonstration selection – it improves upon standard n-shot
ICL across all datasets and models. This is supported by the statistically significant differences in
standard deviations on all datasets for Llama 3 and on all but QNLI for Phi 3.6

Having looked at stability with respect to demonstration selection, we now turn to a more focused
evaluation of stability with respect to demonstration ordering. Table 2 reports the standard deviations
across 50 runs, where the same set of demonstrations is used, but their order is shuffled for each run.
Designed to adapt to shuffled demonstrations, STICL-S shows the highest stability to demonstration
ordering, as evidenced by the smallest standard deviation. The stability improvements with STICL-S
over standard ICL are statistically significant across all datasets.6

We next assess the capacity of STICL to perform OOD generalization by fine-tuning an adapter
on one dataset and then applying the student model to a different dataset within the same task
category, simulating a near-OOD scenario with pairs of closely related datasets. Table 3 shows the
OOD generalization scores for such pairs of datasets in the GLUE benchmark. The results show
that STICL-S not only outperforms other methods in OOD generalization but also maintains higher
stability when adapting to new domains (cf. Table 8 in the Appendix for results with other models).

Table 2: Standard deviations of generalization scores across 50 runs with different demonstration
ordering in the 16-shot setup. The smallest standard deviations for each dataset are highlighted in
bold, while the second-smallest are underlined.

GLUE MMLU

Model Method RTE SST QNLI MNLI COLA MRPC QQP MATH MISC

L
L

am
a

3
(8

B
) n-shot 4.81 1.62 4.19 2.22 3.04 1.81 2.03 2.52 2.87

PBFT 2.71 1.14 4.53 2.69 2.27 1.57 1.82 2.70 3.22
ICV 2.09 1.23 4.08 2.81 1.95 1.61 2.03 1.96 3.18
Batch ICL 3.04 1.47 2.89 2.24 2.53 1.42 1.74 2.51 2.59
STICL-F 1.32 0.72 1.53 1.83 1.76 1.54 1.38 1.89 2.07
STICL-S 0.22 0.53 1.04 1.21 1.28 0.73 1.14 1.22 0.97
STICL-R 2.04 1.34 2.47 2.05 1.85 1.48 1.64 2.03 2.51

Table 3: OOD generalization scores for Llama 2 and Phi 3 averaged over 10 runs, with standard devi-
ations shown as subscripts. For each dataset pair, demonstrations are taken from the left dataset, and
the model is tested on the right dataset. Columns represent results on the right datasets. The highest
scores and lowest standard deviations are in bold, and the second-highest scores are underlined.

Model Method QNLI → RTE RTE → QNLI QQP → MRPC MRPC → QQP

L
la

m
a

3
(8

B
) n-shot 66.32.4 69.61.3 66.51.9 62.22.3

PBFT 66.11.5 69.11.6 67.21.8 62.41.2
ICV 65.71.2 68.72.3 67.51.6 63.02.1
Batch-ICL 65.31.4 66.32.5 64.92.3 62.12.1
STICL-F 67.51.1 70.51.4 68.51.0 64.41.5
STICL-S 69.00.5 71.30.7 69.02.2 66.41.1
STICL-R 67.11.7 70.01.4 68.02.7 68.32.0

5We assess the statistical significance using a two-tailed Wilcoxon signed-rank test (p < 0.05), applying
the Holm-Bonferroni method for family-wise error rate correction due to multiple comparisons.

6 We evaluate significance using a two-tailed Levene’s test (p < 0.05), applying the Holm-Bonferroni
method for family-wise error rate correction.

7

Under review as a conference paper at ICLR 2025

3.2 ADAPTER ARITHMETIC

To overcome the limitations of context window sizes and efficiently handle extensive demonstration
sets in ICL, we employ adapter arithmetic within STICL. STICL achieves this by fine-tuning separate
adapters for each demonstration subset, with each adapter encoding the latent shift corresponding
to its subset. These adapters are then merged by summing their parameters (Chitale et al., 2023),
resulting in a single adapter that integrates knowledge from all subsets. Partitioning demonstrations
into smaller subsets allows for better use of long contexts and effectively extending them without ex-
ceeding window limits or altering the base LLM architecture. Additionally, distributing the prompt
across multiple adapters optimizes GPU utilization, fitting the entire prompt on a single GPU during
inference and reducing memory constraints.

Table 4 shows the ID generalization scores of ICV, Batch-ICL, and STICL in fusing knowledge from
multiple demonstration subsets, specifically using 2, 4, and 8 subsets of 16 demonstrations each.
STICL-S consistently outperforms baseline methods, demonstrating its ability to fuse knowledge
from different subsets. This success parallels broader trends in knowledge fusion within LLMs
Wan et al. (2024). Moreover, this form of adapter arithmetic aligns with recent advances in task
arithmetic, where merging task-specific parameters promotes generalization across multiple tasks
(Ilharco et al., 2023; Ortiz-Jimenez et al., 2023). In our case, this approach effectively improves
generalization and stability when fusing demonstration subsets within the same task.

Table 4: ID generalization scores of knowledge fusion for Llama 3 (8B). The scores are averaged
over 10 runs with standard deviations shown as subscripts. The table compares the effectiveness of
knowledge fusion from 2, 4, and 8 subsets of 16 demonstrations. The highest scores are in bold.

GLUE MMLU
Demonstrations Method RTE SST QNLI MNLI COLA MRPC QQP MATH MISC

2× 16
ICV 75.24.3 93.61.9 77.65.9 69.23.7 58.33.5 74.22.4 70.62.7 45.53.7 72.52.9
Batch-ICL 80.23.6 95.31.8 80.25.8 72.33.0 61.23.1 76.32.0 72.62.4 43.52.9 83.03.6
STICL-S 87.11.6 96.41.3 81.55.0 75.52.5 68.41.8 78.51.4 74.11.6 51.51.6 89.52.0

4× 16
ICV 78.33.6 94.61.8 79.35.5 71.23.1 60.33.3 75.62.2 72.32.4 47.53.5 76.53.8
Batch-ICL 84.43.3 96.41.5 82.45.2 74.32.5 64.22.8 78.31.6 74.32.1 45.52.6 84.53.3
STICL-S 88.42.3 97.50.7 83.64.4 77.32.2 71.41.5 79.60.7 75.21.3 53.51.4 91.01.7

8× 16
ICV 81.32.8 95.61.5 81.85.0 73.32.7 61.32.4 77.31.7 73.82.0 47.52.9 78.03.5
Batch-ICL 85.62.5 96.71.1 83.84.5 75.82.1 65.32.1 79.81.3 75.81.8 45.52.0 84.02.5
STICL-S 92.80.8 98.10.2 87.92.5 81.30.9 74.10.6 82.80.4 78.90.5 57.00.5 93.00.7

4 ANALYSIS OF WEAK-TO-STRONG GENERALIZATION

Building on the observation that STICL consistently outperforms its teacher, standard ICL, we hy-
pothesize that weak-to-strong generalization may be driving these improvements, where the model’s
ability to generalize strengthens progressively from weaker signals. To explore this further, we con-
duct an empirical analysis of STICL-S with Llama 3 (8B) on aggregated examples from all GLUE
datasets, treating them as a single, unified dataset.

4.1 LOCAL CONSISTENCY

A crucial prerequisite for successful weak-to-strong generalization is the student’s ability to maintain
stable outputs under small perturbations of the input, i.e., robustness to input variations. A low
Lipschitz constant serves as a key indicator of this stability, as it bounds the maximum change in the
model’s output for any change in its input (Khromov & Singh, 2024). However, calculating the exact
Lipschitz constant for LLMs is intractable. To approximate it, we leverage the relationship between
the Lipschitz constant and the input-output Jacobian matrix of a neural network. Specifically, we
compute the Frobenius norm of the Jacobian matrix as a tractable proxy, given its relationship to
the spectral norm, which is a known lower bound for the Lipschitz constant (Dherin et al., 2022)
(cf. Appendix B for theoretical details). Figure 2a presents the distribution of the approximated
Lipschitz constants (normalized to [0, 1]) for STICL, PBFT, and ICL, providing a proxy for local
consistency. STICL exhibits a notably lower Lipschitz constant than PBFT and ICL, underscoring
its local consistency.

8

Under review as a conference paper at ICLR 2025

0.2 0.4 0.6 0.8 1
Lipschitz constant

0

2

5

8

10

12

R
el

at
iv

e
fr

eq
ue

nc
y

(%
) STICL

PBFT
ICL

(a) Histogram of approximated Lipschitz constants

1 2 3 4 5 6 7 8 9 10
Training epoch

0

20

40

60

80

C
or

re
ct

ed
 p

se
ud

o-
la

be
ls

 (%
)

RTE
SST

QNLI
MNLI

COLA
MRPC

QQP

(b) Rate of pseudo-label correction over epochs

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Distance to nearest ID neighbor

0

20

40

60

80

Fl
ip

pe
d

pr
ed

ic
tio

ns
 (%

) Corrected
Corrupted

(c) Rate of corrected ID examples

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Distance to nearest OOD neighbor

0

20

40

60

80

Fl
ip

pe
d

pr
ed

ic
tio

ns
 (%

) Corrected
Corrupted

(d) Rate of corrected OOD examples

Figure 2: Empirical analysis of STICL-S on the aggregated GLUE datasets for LLaMA-3 (8B): (a)
Histogram of approximated Lipschitz constants across datasets, computed as the Frobeinus norm
of the input-output Jacobian matrix; (b) Rate of pseudo-label correction over training epochs with
examples from the unlabeled dataset used for self-training. Shaded areas indicate the standard devi-
ation over 10 runs; (c) and (d) Corrected and corrupted prediction rates for (c) ID examples and (d)
OOD examples, based on the Euclidean distance to the closest correctly pseudo-labeled neighbor
(normalized to [0, 1]). There are 10 bins ranging from the interval of [0, 0.1] to [0.9, 1]. Error bars
denote the standard deviation over 10 runs.

4.2 PSEUDO-LABEL CORRECTION AND COVERAGE EXPANSION

Pseudo-label correction, where the student model revises the labels predicted by the teacher model,
is a fundamental mechanism that drives weak-to-strong generalization (Lang et al., 2024). This
process is closely tied to the model’s ability to establish local consistency within the representation
space, where accurate predictions in confident regions propagate corrections to neighboring, less
certain areas, fostering local-to-global consistency throughout training. Figure 2b shows how the
rate of corrected pseudo-labels evolves during training on GLUE datasets. As training progresses,
the percentage of corrected pseudo-labels steadily increases, showcasing STICL’s capacity to ex-
hibit weak-to-strong generalization. Notably, the rate of pseudo-label correction plateaus faster for
simpler datasets like SST and QNLI, which have lower linguistic variability.

The mechanism of pseudo-label correction ties into the phenomenon of coverage expansion – where
the model generalizes beyond the regions covered by pseudo-labels Lang et al. (2024). We hypoth-
esize that the core of STICL’s ability to generalize effectively is anchored in coverage expansion,
which enables local corrections to propagate globally, creating a ripple effect across the representa-
tion space. To understand this dynamic, we analyze which unseen evaluation points are corrected by
clustering them based on their proximity to the nearest correctly pseudo-labeled neighbor in Dunlab.
This is quantified by computing the Euclidean distance between the model’s representations at the
final hidden states, with evaluation points categorized into ten bins based on their normalized dis-
tance from the correct neighbor, spanning the range [0, 1]. Figure 2c illustrates the rate of prediction
flips within these bins, where a flip refers to either correcting an incorrect prediction or corrupting a
correct one. The rate of corrected predictions shows a strong negative correlation with the distance
to the nearest correctly labeled neighbor, as indicated by a Pearson correlation coefficient of −0.968,
while corrupted predictions are more frequent in regions lacking nearby correct pseudo-labels.

9

Under review as a conference paper at ICLR 2025

Coverage expansion shows its effects even on OOD data. Figure 2d, the counterpart to Figure 2c,
shows the rate of flipped predictions for OOD data. Although the impact is reduced, a similar
correction pattern persists, with a Pearson correlation of −0.916. This consistency across domains
highlights the model’s ability to propagate accurate predictions not only within the training domain
but also across OOD data.

5 RELATED WORK

ICL theory. The understanding of ICL has shifted from a traditional task-learning framework to
one focused on task identification. Wies et al. (2023) argue that ICL operates by recognizing latent
tasks embedded within a model’s pre-training, allowing for efficient performance on new tasks.
Building on this, Hoogland et al. (2024) suggest that ICL in transformers progresses through distinct
developmental stages, offering deeper insights into how models adapt to unfamiliar contexts. Li et al.
(2023) further empirically show that ICL predictions become more resilient to input perturbations
with longer prompts and that training on noisy data enhances stability. Despite these theoretical
breakthroughs, ICL remains vulnerable to the selection and ordering of demonstrations (Li et al.,
2024; Lu et al., 2021). Moreover, Kossen et al. (2024) highlight ICL’s biases rooted in pre-training
data, revealing that models do not always uniformly leverage in-context information.

Disentaglement of latent shifts. Research into the inner workings of ICL has revealed how trans-
formers process demonstrations to form task representations. Hendel et al. (2023) and Liu et al.
(2023) show that transformers can compress demonstration examples into a task vector, which effi-
ciently directs the model to generate context-appropriate outputs for queries. These task vectors are
created during a forward pass, capturing the latent shift induced by the demonstrations. Building
on this, Dai et al. (2023) explore using linear attention to compute virtual gradients, simulating the
effect of gradient-based learning within the model. Similarly, Todd et al. (2024) use causal media-
tion analysis to highlight the role of specific attention heads in forming robust task representations
in ICL, termed function vectors.

Self-training and weak-to-strong generalization. Wei et al. (2021) provide a theoretical foun-
dation for self-training, showing that under the assumption of coverage expansion, the minimizers
of population objectives based on self-training and local consistency regularization achieve high ac-
curacy. Lang et al. (2024) further develop the principle of pseudo-label correction, which occurs
when the student model demonstrates strong local consistency. Several works have extended these
ideas in the context of LLMs. For instance, Huang et al. (2023) demonstrate that LLMs can enhance
their reasoning abilities through self-training without the need for labeled data by generating high-
confidence, rationale-augmented answers, which are then used for fine-tuning, leading to improved
performance across various tasks. In the same vein, Qu et al. (2024) propose recursive introspection
for self-improvement, and Wang et al. (2024) introduce self-taught evaluators, showing how LLMs
can autonomously refine and improve their outputs over time.

6 CONCLUSION

We tackled the challenges of stability and long-context handling that arise when processing multiple
demonstrations in ICL within LLMs. To address these issues, we introduced STICL (Self-Training
ICL), a method that disentangles the latent shifts induced by demonstrations from those of the query,
leveraging a teacher-student framework. STICL encodes these latent shifts into an adapter module,
enabling the student model to handle queries without requiring demonstrations in the input. More-
over, STICL allows efficient handling of large demonstration sets by chunking them into manageable
subsets, each processed through separate adapter modules. This not only reduces the instability
caused by demonstration selection and ordering but also alleviates the context window limitations
inherent in transformer-based models. We demonstrated that STICL exhibits weak-to-strong gen-
eralization by refining pseudo-labels through progressive corrections, expanding from local consis-
tency to a more comprehensive coverage across the representation space. Our empirical evaluation
of STICL showed that it consistently outperforms traditional ICL methods, significantly improving
generalization and stability across diverse datasets. These findings underscore the effectiveness of
self-training as a promising strategy for improving ICL performance.

10

Under review as a conference paper at ICLR 2025

REFERENCES

Marah Abdin, Jyoti Aneja, Hany Awadalla, Ahmed Awadallah, Ammar Ahmad Awan, Nguyen
Bach, Amit Bahree, Arash Bakhtiari, Jianmin Bao, and Harkirat Behl et al. Phi-3 technical report:
A highly capable language model locally on your phone, 2024. URL https://arxiv.org/
abs/2404.14219.

A Aizerman. Theoretical foundations of the potential function method in pattern recognition learn-
ing. Automation and remote control, 25:821–837, 1964.

Massih-Reza Amini, Vasilii Feofanov, Loic Pauletto, Lies Hadjadj, Emilie Devijver, and Yury Max-
imov. Self-training: A survey. arXiv preprint arXiv:2202.12040, 2022.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agar-
wal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh,
Daniel Ziegler, Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric Sigler, Mateusz
Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot learners. In
H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), Advances in Neu-
ral Information Processing Systems, volume 33, pp. 1877–1901. Curran Associates, Inc.,
2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/
file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf.

Rajas Chitale, Ankit Vaidya, Aditya Kane, and Archana Santosh Ghotkar. Task arithmetic with
LoRA for continual learning. In Workshop on Advancing Neural Network Training: Computa-
tional Efficiency, Scalability, and Resource Optimization (WANT@NeurIPS 2023), 2023. URL
https://openreview.net/forum?id=4CLNFKi12w.

Damai Dai, Yutao Sun, Li Dong, Yaru Hao, Shuming Ma, Zhifang Sui, and Furu Wei. Why can
GPT learn in-context? language models secretly perform gradient descent as meta-optimizers.
In Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki (eds.), Findings of the Associa-
tion for Computational Linguistics: ACL 2023, pp. 4005–4019, Toronto, Canada, July 2023.
Association for Computational Linguistics. doi: 10.18653/v1/2023.findings-acl.247. URL
https://aclanthology.org/2023.findings-acl.247.

Benoit Dherin, Michael Munn, Mihaela Rosca, and David Barrett. Why neural networks find sim-
ple solutions: The many regularizers of geometric complexity. Advances in Neural Information
Processing Systems, 35:2333–2349, 2022.

Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Jingyuan Ma, Rui Li, Heming Xia, Jingjing Xu,
Zhiyong Wu, Baobao Chang, Xu Sun, Lei Li, and Zhifang Sui. A survey on in-context learning,
2024a. URL https://arxiv.org/abs/2301.00234.

Zican Dong, Junyi Li, Xin Men, Wayne Xin Zhao, Bingbing Wang, Zhen Tian, Weipeng Chen, and
Ji-Rong Wen. Exploring context window of large language models via decomposed positional
vectors. arXiv preprint arXiv:2405.18009, 2024b.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, and Angela Fan et al. The Llama 3 herd of
models, 2024. URL https://arxiv.org/abs/2407.21783.

Roee Hendel, Mor Geva, and Amir Globerson. In-context learning creates task vectors. In
Houda Bouamor, Juan Pino, and Kalika Bali (eds.), Findings of the Association for Compu-
tational Linguistics: EMNLP 2023, pp. 9318–9333, Singapore, December 2023. Association
for Computational Linguistics. doi: 10.18653/v1/2023.findings-emnlp.624. URL https:
//aclanthology.org/2023.findings-emnlp.624.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Ja-
cob Steinhardt. Measuring massive multitask language understanding. In International Confer-
ence on Learning Representations, 2021. URL https://openreview.net/forum?id=
d7KBjmI3GmQ.

11

https://arxiv.org/abs/2404.14219
https://arxiv.org/abs/2404.14219
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://openreview.net/forum?id=4CLNFKi12w
https://aclanthology.org/2023.findings-acl.247
https://arxiv.org/abs/2301.00234
https://arxiv.org/abs/2407.21783
https://aclanthology.org/2023.findings-emnlp.624
https://aclanthology.org/2023.findings-emnlp.624
https://openreview.net/forum?id=d7KBjmI3GmQ
https://openreview.net/forum?id=d7KBjmI3GmQ

Under review as a conference paper at ICLR 2025

Jesse Hoogland, George Wang, Matthew Farrugia-Roberts, Liam Carroll, Susan Wei, and Daniel
Murfet. The developmental landscape of in-context learning. arXiv preprint arXiv:2402.02364,
2024.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin de Laroussilhe, An-
drea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for
NLP, 2019. URL https://arxiv.org/abs/1902.00751.

Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. LoRA: Low-rank adaptation of large language models. In International Con-
ference on Learning Representations, 2022. URL https://openreview.net/forum?
id=nZeVKeeFYf9.

Jiaxin Huang, Shixiang Gu, Le Hou, Yuexin Wu, Xuezhi Wang, Hongkun Yu, and Jiawei Han.
Large language models can self-improve. In Houda Bouamor, Juan Pino, and Kalika Bali
(eds.), Proceedings of the 2023 Conference on Empirical Methods in Natural Language Pro-
cessing, pp. 1051–1068, Singapore, December 2023. Association for Computational Linguis-
tics. doi: 10.18653/v1/2023.emnlp-main.67. URL https://aclanthology.org/2023.
emnlp-main.67.

Gabriel Ilharco, Marco Tulio Ribeiro, Mitchell Wortsman, Ludwig Schmidt, Hannaneh Hajishirzi,
and Ali Farhadi. Editing models with task arithmetic. In The Eleventh International Confer-
ence on Learning Representations, 2023. URL https://openreview.net/forum?id=
6t0Kwf8-jrj.

Kazuki Irie, Róbert Csordás, and Jürgen Schmidhuber. The dual form of neural networks revisited:
Connecting test time predictions to training patterns via spotlights of attention. In International
Conference on Machine Learning, pp. 9639–9659. PMLR, 2022.

Grigory Khromov and Sidak Pal Singh. Some intriguing aspects about Lipschitz continuity of neural
networks. In The Twelfth International Conference on Learning Representations, 2024. URL
https://openreview.net/forum?id=5jWsW08zUh.

Jannik Kossen, Yarin Gal, and Tom Rainforth. In-context learning learns label relationships but is
not conventional learning. In The Twelfth International Conference on Learning Representations,
2024. URL https://openreview.net/forum?id=YPIA7bgd5y.

Hunter Lang, David Sontag, and Aravindan Vijayaraghavan. Theoretical analysis of weak-to-strong
generalization. arXiv preprint arXiv:2405.16043, 2024.

Fabian Latorre, Paul Rolland, and Volkan Cevher. Lipschitz constant estimation of neural networks
via sparse polynomial optimization. In International Conference on Learning Representations,
2020. URL https://openreview.net/forum?id=rJe4_xSFDB.

Lvxue Li, Jiaqi Chen, Xinyu Lu, Yaojie Lu, Hongyu Lin, Shuheng Zhou, Huijia Zhu, Weiqiang
Wang, Zhongyi Liu, Xianpei Han, et al. Debiasing in-context learning by instructing LLMs how
to follow demonstrations. In Findings of the Association for Computational Linguistics ACL 2024,
pp. 7203–7215, 2024.

Yingcong Li, Muhammed Emrullah Ildiz, Dimitris Papailiopoulos, and Samet Oymak. Transformers
as algorithms: Generalization and stability in in-context learning. In International Conference on
Machine Learning, pp. 19565–19594. PMLR, 2023.

Nelson F. Liu, Kevin Lin, John Hewitt, Ashwin Paranjape, Michele Bevilacqua, Fabio Petroni, and
Percy Liang. Lost in the Middle: How Language Models Use Long Contexts. Transactions of
the Association for Computational Linguistics, 12:157–173, 02 2024. ISSN 2307-387X. doi:
10.1162/tacl a 00638. URL https://doi.org/10.1162/tacl_a_00638.

Sheng Liu, Lei Xing, and James Zou. In-context vectors: Making in context learning more effective
and controllable through latent space steering. arXiv preprint arXiv:2311.06668, 2023.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International Confer-
ence on Learning Representations, 2019.

12

https://arxiv.org/abs/1902.00751
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://aclanthology.org/2023.emnlp-main.67
https://aclanthology.org/2023.emnlp-main.67
https://openreview.net/forum?id=6t0Kwf8-jrj
https://openreview.net/forum?id=6t0Kwf8-jrj
https://openreview.net/forum?id=5jWsW08zUh
https://openreview.net/forum?id=YPIA7bgd5y
https://openreview.net/forum?id=rJe4_xSFDB
https://doi.org/10.1162/tacl_a_00638

Under review as a conference paper at ICLR 2025

Yao Lu, Max Bartolo, Alastair Moore, Sebastian Riedel, and Pontus Stenetorp. Fantastically ordered
prompts and where to find them: Overcoming few-shot prompt order sensitivity. arXiv preprint
arXiv:2104.08786, 2021.

Guillermo Ortiz-Jimenez, Alessandro Favero, and Pascal Frossard. Task arithmetic in the tan-
gent space: Improved editing of pre-trained models. In Thirty-seventh Conference on Neural
Information Processing Systems, 2023. URL https://openreview.net/forum?id=
0A9f2jZDGW.

Yuxiao Qu, Tianjun Zhang, Naman Garg, and Aviral Kumar. Recursive introspection: Teaching
foundation model agents how to self-improve. In Automated Reinforcement Learning: Exploring
Meta-Learning, AutoML, and LLMs, 2024. URL https://openreview.net/forum?id=
qDXdmdBLhR.

Timo Schick and Hinrich Schütze. Exploiting cloze-questions for few-shot text classification and
natural language inference. In Paola Merlo, Jorg Tiedemann, and Reut Tsarfaty (eds.), Proceed-
ings of the 16th Conference of the European Chapter of the Association for Computational Lin-
guistics: Main Volume, pp. 255–269, Online, April 2021. Association for Computational Linguis-
tics. doi: 10.18653/v1/2021.eacl-main.20. URL https://aclanthology.org/2021.
eacl-main.20.

Sho Sonoda and Noboru Murata. Neural network with unbounded activation functions is universal
approximator. Applied and Computational Harmonic Analysis, 43(2):233–268, 2017.

Eric Todd, Millicent Li, Arnab Sen Sharma, Aaron Mueller, Byron C Wallace, and David Bau.
Function vectors in large language models. In The Twelfth International Conference on Learning
Representations, 2024. URL https://openreview.net/forum?id=AwyxtyMwaG.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, and Shruti Bhosale et al. Llama 2: Open foun-
dation and fine-tuned chat models, 2023. URL https://arxiv.org/abs/2307.09288.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Ł ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon, U. Von
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.), Ad-
vances in Neural Information Processing Systems, volume 30. Curran Associates, Inc.,
2017. URL https://proceedings.neurips.cc/paper_files/paper/2017/
file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.

Fanqi Wan, Xinting Huang, Deng Cai, Xiaojun Quan, Wei Bi, and Shuming Shi. Knowledge fusion
of large language models. In The Twelfth International Conference on Learning Representations,
2024. URL https://openreview.net/forum?id=jiDsk12qcz.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel Bowman. GLUE:
A multi-task benchmark and analysis platform for natural language understanding. In Tal Linzen,
Grzegorz Chrupała, and Afra Alishahi (eds.), Proceedings of the 2018 EMNLP Workshop Black-
boxNLP: Analyzing and Interpreting Neural Networks for NLP, pp. 353–355, Brussels, Belgium,
November 2018. Association for Computational Linguistics. doi: 10.18653/v1/W18-5446. URL
https://aclanthology.org/W18-5446.

Tianlu Wang, Ilia Kulikov, Olga Golovneva, Ping Yu, Weizhe Yuan, Jane Dwivedi-Yu,
Richard Yuanzhe Pang, Maryam Fazel-Zarandi, Jason Weston, and Xian Li. Self-taught eval-
uators. arXiv preprint arXiv:2408.02666, 2024.

Colin Wei, Kendrick Shen, Yining Chen, and Tengyu Ma. Theoretical analysis of self-training
with deep networks on unlabeled data. In International Conference on Learning Representations,
2021. URL https://openreview.net/forum?id=rC8sJ4i6kaH.

Noam Wies, Yoav Levine, and Amnon Shashua. The learnability of in-context learning. In
Thirty-seventh Conference on Neural Information Processing Systems, 2023. URL https:
//openreview.net/forum?id=f3JNQd7CHM.

13

https://openreview.net/forum?id=0A9f2jZDGW
https://openreview.net/forum?id=0A9f2jZDGW
https://openreview.net/forum?id=qDXdmdBLhR
https://openreview.net/forum?id=qDXdmdBLhR
https://aclanthology.org/2021.eacl-main.20
https://aclanthology.org/2021.eacl-main.20
https://openreview.net/forum?id=AwyxtyMwaG
https://arxiv.org/abs/2307.09288
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://openreview.net/forum?id=jiDsk12qcz
https://aclanthology.org/W18-5446
https://openreview.net/forum?id=rC8sJ4i6kaH
https://openreview.net/forum?id=f3JNQd7CHM
https://openreview.net/forum?id=f3JNQd7CHM

Under review as a conference paper at ICLR 2025

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Remi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick
von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger,
Mariama Drame, Quentin Lhoest, and Alexander Rush. Transformers: State-of-the-art natural
language processing. In Qun Liu and David Schlangen (eds.), Proceedings of the 2020 Confer-
ence on Empirical Methods in Natural Language Processing: System Demonstrations, pp. 38–
45, Online, October 2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.
emnlp-demos.6. URL https://aclanthology.org/2020.emnlp-demos.6.

Kaiyi Zhang, Ang Lv, Yuhan Chen, Hansen Ha, Tao Xu, and Rui Yan. Batch-ICL: Effective, effi-
cient, and order-agnostic in-context learning. arXiv preprint arXiv:2401.06469, 2024.

14

https://aclanthology.org/2020.emnlp-demos.6

Under review as a conference paper at ICLR 2025

A DUAL FORM OF ICL

We offer a detailed derivation of (5), originally introduced by Dai et al. (2023), expanding on the key
intermediate steps for clarity, which were not explicitly covered in the original work. The goal is to
decompose the attention head output into separate components corresponding to the demonstrations
and the query, thereby disentangling the latent shifts induced by ICL.

A.1 STARTING POINT

We begin with the approximation of the attention head’s output using linear attention:

fAH(x
(t)
q) ≈ WV [Xd;Xq] (WK [Xd;Xq])

⊤
q(t), (9)

where:

• WV ∈ Rdh×dmodel is the value weight matrix;

• WK ∈ Rdh×dmodel is the key weight matrix;

• Xd ∈ Rdmodel×Nd is the matrix of demonstration token representations;

• Xq ∈ Rdmodel×Nq is the matrix of previous query token representations up to time t− 1;

• q(t) = WQx
(t)
q ∈ Rdh is the query vector at time t, with WQ ∈ Rdh×dmodel being the

query weight matrix;

• [Xd;Xq] is the concatenation of Xd and Xq along the sequence dimension.

A.2 EXPANDING THE CONCATENATED MATRICES

We can expand the concatenated matrices as follows:

WV [Xd;Xq] = [WV Xd;WV Xq] = [Vd;Vq], (10)
WK [Xd;Xq] = [WKXd;WKXq] = [Kd;Kq], (11)

where:

• Vd = WV Xd is the value matrix for the demonstrations;

• Vq = WV Xq is the value matrix for the previous queries;

• Kd = WKXd is the key matrix for the demonstrations;

• Kq = WKXq is the key matrix for the previous queries.

The transpose of the concatenated key matrix is:

(WK [Xd;Xq])
⊤
=
[
K⊤

d ;K
⊤
q

]
. (12)

A.3 PERFORMING THE MATRIX MULTIPLICATION

Substituting the expanded forms into Equation (9) using rules for block matrix multiplication, we
have:

fAH(x
(t)
q) ≈ [Vd;Vq]

[
K⊤

d ;K
⊤
q

]
q(t) =

(
VdK

⊤
d +VqK

⊤
q

)
q(t). (13)

This separates the contributions from the demonstrations and the query sequences.

15

Under review as a conference paper at ICLR 2025

A.4 DEFINING THE COMPONENTS

We define:
WZS = VqK

⊤
q = WV Xq (WKXq)

⊤
, (14)

∆WICL = VdK
⊤
d = WV Xd (WKXd)

⊤
. (15)

Here:

• WZS represents the zero-shot component, capturing the model’s behavior based on the
query sequence alone;

• ∆WICL represents the latent shift induced by the demonstrations, capturing the effect of
in-context learning.

A.5 FINAL EXPRESSION

Substituting (14) and (15) back into the expression, we obtain:

fAH(x
(t)
q) ≈ (WZS +∆WICL)q

(t) = WZSq
(t) +∆WICLq

(t). (16)

A.6 INTERPRETATION

The decomposition shows that the attention head output can be viewed as the sum of:

1. The zero-shot component (WZSq
(t)): the model’s output when only the query sequence

is considered, without any influence from the demonstrations;

2. The latent shift due to ICL (∆WICLq
(t)): the additional contribution from the demon-

strations, representing the knowledge introduced via in-context learning.

This separation aligns with the theoretical motivation to disentangle the latent shifts induced by the
demonstrations from those induced by the query, allowing for more efficient and stable processing
of queries independently of demonstrations.

B LIPSCHITZ CONTINUITY IN NEURAL NETWORKS

Lipschitz continuity is a fundamental concept in the analysis of neural networks as it provides a
bound on how much the output of a function can change with respect to its input. Formally, a
function f : Rn → Rm is said to be Lipschitz continuous with constant L ≥ 0 if for any two inputs
x,x′ ∈ Rn the following inequality holds:

∥f(x)− f(x′)∥ ≤ L∥x− x′∥.
This property ensures that the function f behaves smoothly, meaning small changes in the input lead
to small changes in the output, which is crucial for robustness in neural networks, particularly for
predictive models (Khromov & Singh, 2024).

B.1 RELATIONSHIP BETWEEN THE LIPSCHITZ CONSTANT AND THE JACOBIAN MATRIX

In neural networks, the Lipschitz constant can be bounded by the spectral norm of the Jacobian
matrix, which quantifies the sensitivity of a function’s output to changes in the input. The Jacobian
matrix Jf (x) ∈ Rm×n of a function f is defined as the matrix of all partial derivatives:

[Jf (x)]i,j =
∂fi(x)

∂xj
.

The spectral norm of the Jacobian matrix, denoted ∥Jf (x)∥2, provides an upper bound on the Lips-
chitz constant L (Latorre et al., 2020):

∥Jf (x)∥2 ≤ L,∀x ∈ Rn.

The spectral norm represents the greatest possible rate of change in the function’s output for any
input variation. However, calculating the exact spectral norm can be computationally expensive,
especially for deep neural networks.

16

Under review as a conference paper at ICLR 2025

B.2 FROBENIUS NORM AS A SURROGATE FOR THE LIPSCHITZ CONSTANT

The Frobenius norm of the Jacobian matrix is often used as a surrogate for estimating the Lipschitz
constant to avoid the computational complexity of calculating the spectral norm. The Frobenius
norm, denoted ∥A∥F , is easier to compute and relates to the spectral norm through the following
inequality:

∥A∥2 ≤ ∥A∥F ≤
√
r∥A∥2,

where r is the rank of the matrix A. The Frobenius norm provides an upper bound on the spectral
norm and thus serves as a useful proxy for estimating the Lipschitz constant. This approximation
is particularly useful in large-scale models, such as LLMs, where direct computation of the spectral
norm is infeasible.

B.3 EMPIRICAL EVALUATION OF LIPSCHITZ CONTINUITY

In our experiments, we approximate the Lipschitz constant by computing the Frobenius norm of ex-
ample representations with respect to input embeddings. As shown in Figure 2a, STICL demonstrates
a significantly lower approximated Lipschitz constant compared to PBFT and ICL. This lower value
suggests that STICL is more robust to input perturbations, which is a critical property for correcting
pseudo-labels.

In summary, approximating the Lipschitz constant using the Frobenius norm provides an efficient
tool for managing the smoothness of neural networks, enabling robust model behavior even in chal-
lenging scenarios (Sonoda & Murata, 2017; Khromov & Singh, 2024).

C ADDITIONAL RESULTS

Here, we present additional results that supplement those in the main paper.

Table 5: ID generalization scores for the 16-shot scenario and |Dunlab| = 100 for LLama 2 (7B). The
standard deviations of 10 runs are shown as subscripts.

GLUE MMLU
Model Method RTE SST QNLI MNLI COLA MRPC QQP MATH MISC

L
la

m
a

2
(7

B
)

0-shot 57.8 75.4 59.3 55.7 40.7 59.4 58.7 29.0 59.0
n-shot 69.24.3 89.82.1 74.25.9 63.32.8 54.33.5 66.92.4 64.71.5 37.54.8 80.05.3

PBFT 69.02.7 89.70.4 73.35.0 64.44.7 51.22.9 67.92.0 64.61.6 40.03.2 79.52.1

ICV 68.04.6 87.82.6 71.26.7 60.94.0 53.12.4 68.81.7 65.01.9 39.52.7 62.50.6

Batch-ICL 75.20.8 91.21.9 74.00.8 66.53.3 55.92.1 70.30.8 69.11.8 34.52.3 77.04.1

STICL-F 77.20.7 90.20.7 76.84.2 66.52.4 60.11.2 71.60.2 68.80.8 43.01.6 82.52.5

STICL-S 81.92.5 92.10.3 77.30.9 70.41.8 62.83.4 72.32.6 68.20.5 46.51.5 82.51.7

STICL-R 81.11.9 93.62.0 74.73.6 69.62.9 57.92.9 73.12.0 66.82.3 41.52.6 82.03.7

Table 6: ID generalization scores for n-shot scenarios (n = 4, 8, 32, with Dunlab = 100) for Llama
3 (8B). The standard deviations of 10 runs are shown as subscripts.

GLUE MMLU
Model n Method RTE SST QNLI MNLI COLA MRPC QQP MATH MISC

L
la

m
a

3
(8

B
)

4
n-shot 71.35.4 84.54.4 70.12.9 62.42.7 54.63.5 69.24.1 62.02.3 37.03.9 76.52.5

STICL-S 80.31.5 90.90.9 76.31.4 70.11.8 61.42.0 72.91.5 70.31.2 43.01.3 77.51.8

8
n-shot 72.72.1 89.42.6 73.52.5 64.73.1 55.82.8 71.22.4 64.32.9 37.01.3 77.52.1

STICL-S 82.11.1 93.21.0 78.31.3 72.21.6 63.71.8 73.91.3 72.10.4 47.50.5 84.01.4

32
n-shot 75.33.2 93.21.9 77.72.9 69.11.9 58.31.5 76.42.2 74.21.9 43.01.5 84.52.1

STICL-S 87.90.6 97.90.4 83.10.9 74.01.1 64.61.2 79.40.6 74.81.5 56.50.2 89.00.4

17

Under review as a conference paper at ICLR 2025

Table 7: ID generalization scores of STICL-S for n = 16 shots and |Dunlab| = 200, 500 for Llama
3 (8B). Results are shown for GLUE datasets with n-shot and STICL-S methods. The standard
deviations of 10 runs are shown as subscripts.

GLUE
Model |Dunlab| RTE SST QNLI MNLI COLA MRPC QQP

Llama 3 (8B) 200 86.20.4 97.20.4 81.61.0 73.91.3 64.71.1 78.90.7 74.00.5
500 86.90.3 97.10.5 81.90.7 74.81.0 64.60.8 81.40.8 75.20.3

Table 8: OOD generalization scores for Phi 3 and Llama 2 in a 16-shot scenario with Dunlab = 100
over 10 runs with standard deviations shown as subscripts. In each dataset pair, demonstrations are
taken from the left dataset, and the model is tested on the right dataset. The columns correspond to
the results on the right datasets.

Model Method QNLI → RTE RTE → QNLI QQP → MRPC MRPC → QQP

Phi 3 (mini 4k)
n-shot 64.32.5 67.21.5 63.72.3 59.42.2
PBFT 64.11.8 66.91.6 64.72.0 60.11.4
STICL-S 67.40.6 69.20.9 66.32.4 64.41.3

Llama 2 (7B)
n-shot 62.92.3 66.31.2 64.51.9 61.12.2
PBFT 62.81.3 68.11.4 65.91.8 61.31.2
STICL-S 64.80.4 70.30.6 67.82.1 65.01.1

D EXPERIMENTAL DETAILS

D.1 MODELS

For all three models – Llama 3, Llama 2, and Phi 3 – we utilize the bfloat16 half-precision format
for parameters. A summary of the models is provided in Table 9.

D.2 HYPERPARAMETERS

We employ the AdamW optimizer (Loshchilov & Hutter, 2019) for both PBFT and STICL variants,
with a learning rate of 10−4. For ICV (Liu et al., 2023) and Batch-ICL (Zhang et al., 2024), we
follow the implementations provided in the original papers and adapt them to our codebase, using
their default parameters where specified. In the case of Batch-ICL, we utilize attention heads from
the last 20 layers (k = 20) and fine-tune the model for 10 epochs.

LoRA adapter configuration.

• r = 8
The rank of the low-rank matrices used to decompose the original weight matrix in LoRA.
A smaller r reduces the parameter count while retaining essential information.

• α = 32:
A scaling factor applied to the low-rank updates, balancing the influence of the original
weights and the low-rank matrices.

• Dropout: 0.1
The dropout rate applied to the low-rank updates.

• Target modules:
q proj, k proj, v proj, o proj, gate proj, up proj, down proj

D.3 COMPUTING INFRASTRUCTURE

We conducted our experiments on 4× AMD Ryzen Threadripper 3970X 32-Core Processors and 4×
NVIDIA GeForce RTX 3090 GPUs with 24GB of RAM.

18

Under review as a conference paper at ICLR 2025

Table 9: Summary of the models used in the experiments, including their Hugging Face IDs, param-
eter counts, context window sizes, training token volumes, and adapter sizes.

Model Hugging Face ID Parameters Context window size Training tokens Adapter size
Llama 3 Meta-Llama-3-8Bb 8B 8k 15T 21M
Llama 2 Llama-2-7b 7B 4k 2T 20M
Phi 3 Phi-3-mini-4k-instruct 3.8B 4k 3.3T 4.5M

E PROMPT TEMPLATES

E.1 GLUE PROMPT STRUCTURE

Generic prompt template for GLUE tasks

Demonstrations:
{Sentence 1}
{Sentence 2 (if applicable)}
Question: {Task-specific question}
Answer: ({Correct answer})

Query:
{Sentence 1}
{Sentence 2 (if applicable)}
Question: {Task-specific question}
Answer: (

The prompts for GLUE tasks typically consist of two sentences (or one in certain cases) followed
by a task-specific question and the corresponding answer. The model is expected to choose from
predefined labels like Yes/No, True/False, or specific class names based on the dataset. The phrasing
of the question preceding each answer in the demonstrations is specific to the task. Below is a list of
the questions used for each GLUE dataset. To encourage the model to select from predefined labels,
we prepend the phrase “answer with one word” before each question, and we append clarifying
options such as Yes or No? to prompt a more targeted response:

• RTE: {hypothesis} True or False?

• SST: What is the sentiment? Positive or Negative?

• QNLI: Does the sentence answer the question? Yes or No?

• MNLI: Is the second sentence an Entailment, Contradiction,
or Neutral?

• COLA: Is this sentence linguistically acceptable? Yes or
No?

• MRPC: Do both sentences say the same thing? Yes or No?

• QQP: Do both questions ask the same thing? Yes or No?

E.2 MMLU PROMPT STRUCTURE

MMLU tasks are structured to provide the model with a set of demonstrations followed by a query.
These prompts focus on multi-choice questions, where the model must predict one of the given
options. Below is the general structure of the MMLU prompt template:

19

Under review as a conference paper at ICLR 2025

Generic prompt template for MMLU sub-datasets

Demonstrations:
Question: {Previous Question 1}
Answer choices:
(A: {Choice A1}),
(B: {Choice B1}),
(C: {Choice C1}),
(D: {Choice D1})

Answer: (Correct Answer 1)

Question: {Previous Question 2}
Answer choices:
(A: {Choice A2}),
(B: {Choice B2}),
(C: {Choice C2}),
(D: {Choice D2})
Answer: (Correct Answer 2)

...

Query:
Question: {Current Question}
Answer choices:
(A: {Choice A}),
(B: {Choice B}),
(C: {Choice C}),
(D: {Choice D})
Answer: (

Example for MMLU elementary math (MATH)

Demonstrations:
Question: Ms. Perez drove a total of 40 miles in 5 days.
She drove the same number of miles each day.
How many miles did Ms. Perez drive each day?
Answer choices: (A: 5), (B: 7), (C: 8), (D: 9)
Answer: (C: 8)

Question: Find the median in the set of data
23, 13, 18, 29, 32, 25.
Answer choices: (A: 18), (B: 24), (C: 25), (D: 29)
Answer: (B: 24)

Query:
Q: A worker on an assembly line takes 7 hours to produce
22 parts. At that rate how many parts can she produce
in 35 hours?
Answer choices:
(A: 220 parts),
(B: 770 parts),
(C: 4 parts),
(D: 110 parts)
Answer: (

20

	Introduction
	Method
	Disentangling Latent Shifts
	Self-Training ICL

	Experiments
	Generalization and Stability
	Adapter Arithmetic

	Analysis of Weak-to-Strong Generalization
	Local Consistency
	Pseudo-Label Correction and Coverage Expansion

	Related Work
	Conclusion
	Dual Form of ICL
	Starting Point
	Expanding the Concatenated Matrices
	Performing the Matrix Multiplication
	Defining the Components
	Final Expression
	Interpretation

	Lipschitz Continuity in Neural Networks
	Relationship Between the Lipschitz Constant and the Jacobian Matrix
	Frobenius Norm as a Surrogate for the Lipschitz Constant
	Empirical Evaluation of Lipschitz Continuity

	Additional Results
	Experimental Details
	Models
	Hyperparameters
	Computing Infrastructure

	Prompt Templates
	GLUE Prompt Structure
	MMLU prompt structure

